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Supplementary Material 

A.    Dimensionality reduction frameworks† 
Diffusion Maps. First the pairwise distance between every pair of elements in the dataset is calculated to form a symmetric 𝑁 ×𝑁 distance 
matrix 𝐃, where a single row represents the Euclidean distance of the corresponding row-indexed element to each column-indexed element. 
Using this matrix as input, the nonlinear-dimensionality reduction method diffusion maps1 (DM) is next applied to generate the corresponding 
conformational manifold. To begin, an isotropic Gaussian kernel is applied to these distances to create a real, symmetric similarity matrix 

 
 𝐴!" = exp(−𝐷!"# /	2𝜀) 

 
(11) 

The similarity matrix 𝐀, calculated using a suitable 𝜀 value (i.e., the Gaussian bandwidth), is then divided by a diagonal matrix of its row sums 
to construct a symmetric, positive semidefinite stochastic Markov transition matrix 𝐌. This matrix represents the relative pairwise affinity 
among all images and is closely related to the normalized graph Laplacian 𝐋 = 𝐈 −𝐌, where 𝐈 is the identity matrix.2 Eigendecomposition of 
the matrix 𝐌 is then performed to retrieve an ordered set of 𝑁 orthogonal eigenvectors ranked by eigenvalue, which define a nonlinear spectral 
embedding of the data.3 

The Gaussian bandwidth in the above expression has a strong influence on the notion of similarity between images. An optimal Gaussian 
bandwidth value, henceforth denoted 𝜀⋆, can be determined by a prominent routine—the “bandwidth estimation” method—which uses the 
correlation dimension as a measure of fractal dimensionality.2–4 At small Gaussian bandwidths, the system takes on a relatively fine-grained 
definition of similarity (i.e., data points only see their direct neighbors). Increasing 𝜀 transforms this relationship into a more coarse-grained 
notion of similarity. These notions of similarity govern the behavior of all subsequent steps, and ultimately impact the geometric structure of 
the resultant manifold embedding. 

Notably, in the limit 𝜀 → 0 and 𝑁 → ∞, and with an appropriate normalization of the similarity matrix,1 the DM eigenvectors converge to 
the eigenfunctions of the Laplace-Beltrami operator (LBO).3 The LBO acting on a scalar function 𝑓 on a Riemannian manifold is given by 

 
 ∇#𝑓 = 𝑔%&/#𝜕!(	𝑔&/#𝑔!"𝜕"𝑓	) 

 
(12) 

where 𝑔 = det	(	𝑔!") and 𝑔!" are the components of the metric tensor.5,6 Specifically, the eigenfunctions of the LBO, ∇#𝑓 = 𝜆𝑓, form a 
complete basis in the function space 𝐿#(Ω) of measurable and square-integrable functions on the manifold Ω.7 For a bounded manifold, the 
eigenfunctions must further satisfy boundary conditions; for example, DM requires the Neumann boundary conditions,1 such that the normal 
derivatives on the boundaries vanish. Therefore, the eigenfunctions depend also on the boundary of Ω. 

It is well understood that the eigenfunctions of the LBO on Ω carry valuable information about the underlying intrinsic geometry and are 
thus important for understanding many systems. For compact manifolds with a boundary, as an example, the eigenfunctions are the modes of 
vibration of a 1D string or a 2D membrane. For compact manifolds without a boundary (i.e., closed manifolds), the well-known spherical 
harmonics are eigenfunctions of the spherical surface. In the field of structural biology, the eigenfunctions of the LBO on SO(3), which are the 
Wigner-D functions, have been used for retrieving the unknown orientations of single-particle X-ray and cryo-EM snapshots.8,9 In general, the 
eigenfunctions of the LBO on different manifolds are fundamental to mathematics and sciences, and describe a wide diversity of seemingly 
disparate phenomena—reflecting the so-called “underlying unity of nature”—from quantum mechanics to gravitational fields.10 

Principal Component Analysis. For the PCA approach,11 instead of defining the Gaussian kernel as previously used in DM for the Markov 
transition matrix, a matrix 𝐙 of dimension 𝑃 × 𝑁 is formed, where 𝑃 is the number of components (e.g., number of pixels when dealing with 
images) describing each element of the dataset. Additionally, 𝐙 is normalized by removing the mean of all images from each image. Finally, an 
eigendecomposition of the 𝑁 ×𝑁 matrix 𝐙(𝐙 yields a set of orthogonal eigenvectors, the principal components (PC), together with 
corresponding eigenvalues. 

To note an important commonality between PCA and DM, the matrix 𝐙(𝐙 is symmetric and positive semi-definite (i.e., all eigenvalues are 
larger than zero),12 which is also the case for the Markov transition matrix used in the DM method. A detailed comparison of results for PCA 
and DM for pristine PD datasets is provided in our companion article, where we further study the sensitivity of PCA and DM to experimental 
perturbations such as SNR and CTF.13 
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B.    Additional properties of PD manifolds 
Two orthographic views of 3D models in the directions of two PDs are shown in Figure 13-A and 13-B, each composed of 20 overlaid 3D volumes 
from CM#. The 2D distances (in units of pixels) were measured between the peripheral ends of each consecutive states’ rotated subunit (as 
seen in red and blue encircled regions). In Figure 13-C, the mean 2D distance measurements on each consecutive region (i.e., the red and blue 
region, respectively) are plotted with error bars representing standard deviation, along with linear regression. Although the interval between 
successive 3D states is constant, when projections are taken, apparent distances can strongly vary based on the viewing direction. We note 
that the behavior of the Euclidean distance matrix calculated in the DM method is less intuitive than the distance matrix in the current 
demonstration, and instead records the changes on a pixel-by-pixel basis for the entire image. 
 

 
Fig. 13    Example for emergence of PD disparity due to foreshortened distances when taking 2D projections of 3D EDMs. To note, pixels were 
only tracked for demonstration purposes in the current figure, which is not a prerequisite for our unsupervised machine learning approach.  
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In Figure 14, a presentation similar to Figure 11 is shown for the remaining four PDs. Here, subspaces requiring eigenvector rotations (e.g., both 
parabolas in b) and presenting subtle boundary problems (e.g., the inwards curling of the point-cloud trajectory in {Ψ) ×Ψ*} of d) can also be 
seen in certain 2D subspaces. Note that for the PD in a, due to PD disparity, the hierarchy of CM information is actually reversed from those 
seen in the other four PDs. Here, the CM# Chebyshev polynomials are instead present along {Ψ& ×Ψ!} combinations (in the first row), while 
CM& Chebyshev polynomials are present along {Ψ# ×Ψ"} combinations (in the second row). 
 

 
Fig. 14    Collection of 2D subspaces from leading eigenfunctions for the remaining four PDs, as was similarly presented for PD1 in Figure 11. 
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We further investigated the 𝑀) = 10 × 10 × 10 = 1000 states making up SS) (chosen for ease of computation to contain only half as many 
states along each degree of freedom as compared to SS& and SS#). For each conformational motion present in a given PD data set (this time 
for CM&, CM# and CM)), a set of unique Lissajous curves were again found spanning specific 2D subspaces of the embedded manifold, with the 
Chebyshev subset describing the corresponding CM along a trajectory in the 2D subspace explicitly. As an example, Figure 15 shows the set of 
2D subspaces where these modes exist for PD+. To note, due to the increased complexity of SS), these patterns were much more interspersed 
throughout the embedding, but still followed a similarly consistent ordering. In addition, due to the relatively small range of motion exhibited 
by the third conformational domain (as seen from these PDs and as designed in the ground-truth structures), all CM) modes were found in 
higher-order eigenvectors; e.g., Ψ+ and higher for these five PDs. As similar patterns were identified in SS) as in previous accounts, for the 
remainder of our study, focus is honed onto mapping data sets generated for SS#. 
 

 
Fig. 15    A set of 2D subspaces projected from the embedding obtained from a PD in SS). Conformational modes are demarcated in red, blue 
and magenta boxes for CM&, CM# and CM), respectively. To increase visibility of relevant patterns, the opacity of all other rows has been 
decreased. 
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C.    Example of non-trivial boundary conditions due to steric hindrance 
The initial 20 × 20 rectangular state space is displayed in Figure 16-A, where red boxes indicate states that were removed to form a grid with 
octagonal boundaries. The schematic in Figure 16-B provides some context for the possibility of a non-rectangular state space, which can be 
envisioned as a top-down view of (𝑖) a large domain that opens and closes, and (𝑖𝑖) a small domain that translates left and right. Naturally, 
due to steric hindrance, while the larger domain is in a closed or half-closed state, the smaller domain is impeded from accessing a subset of 
its possible states, and vice versa. The eigenbasis obtained after application of a set of high-dimensional rotations13 (of dimension 𝑑 = 15) is 
shown in Figure 16-D. The required operators were estimated manually, and included several large and small transformations: {𝑅+,-(40°), 
𝑅#,-(−15°), 𝑅#,+(3°), 𝑅#,.(4°), 𝑅-,.(20°), 𝑅-,&#(−25°), 𝑅#,&&(−6°), 𝑅.,&&(25°), 𝑅.,&+(5°), 𝑅-,&&(3°)}. 
 

 
Figure 16.    An example of non-trivial boundary conditions due to steric hindrance (b), with associated octagonal state space (a) of EDMs and 
corresponding eigenfunctions (c). In d, an ad-hoc eigenfunction realignment is applied to demonstrate innate features of the embedding. 
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Appendix. Description of symbols and abbreviations 

Name Description 

CM Conformational motion 

𝑛 Intrinsic dimensionality of the system, with one degree of freedom per CM 

SS/ State space with 𝑛 degrees of freedom, where each state is a unique conformation of the system  

𝑀/ Number of unique ground-truth states defining a given SS/ : 𝑀/ ∈ {20, 400, 1000} for 𝑛 ∈ {1, 2, 3} 
 

	Ω Compact Riemannian 𝑛-dimensional manifold 

𝜓0 Eigenfunctions of the Laplace-Beltrami operator 

Ψ! DM eigenvector of the 𝑛-manifold 

𝐿 Lissajous curves; 𝐿1,2 ∈ 𝐿 

𝑇0 Chebyshev polynomial of the first kind; e.g., 𝑇#(𝑥) = 2𝑥# − 1 for the parabola 

𝜀 Gaussian bandwidth used in DM Gaussian kernel 

𝑚 Number of atoms per atomic-coordinate structure (ACS) 

𝑉 Number of voxels per electron density map (EDM) 

𝑃 
 
Number of pixels per image obtained from a projection direction (PD) 

𝑑 
 
Dimension of orthogonal matrix 𝑂 (and 𝑅!") applied on embedded space in ℝ3 

𝑅!" 
 
2D rotation sub-matrix operating on {Ψ! , Ψ"}, of which there are 𝑑(𝑑 − 1)/2		 
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Supplementary notes and references 

† The current section is a near replica of similar descriptions of DM and PCA provided in our companion article,13 with the exception of a new 
subsection detailing the Laplace-Beltrami operator. 
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