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This work is based on the manifold-embedding approach to study biological molecules exhibiting continu-
ous conformational changes. Previous work established a method capable of reconstructing 3D movies and
accompanying energetics of atomic-level structures from single-particle cryo-EM images of macromolecules
displaying multiple conformational degrees of freedom. Here, we introduce an unsupervised geometric ma-
chine learning approach that is informed by detailed heuristic analysis of manifolds formed by simulated
heterogeneous cryo-EM datasets generated from an atomic structure. These simulated data were generated
with increasing complexity to account for multiple conformational motions, state occupancies and typical
microscope parameters in a wide range of signal-to-noise ratios. Using these datasets as ground-truth, we
provide detailed exposition of our findings using several conformational motions while exploring the available
parameter space. Guided by these insights, we build a framework to leverage the high-dimensional geomet-
ric information obtained towards reconstituting a quasi-continuum of conformational states in the form of a
free-energy landscape and respective 3D density maps for all states therein. As shown by a direct comparison
of results, this framework offers substantial improvements relative to the previous work.

INTRODUCTION

Molecular machines, consisting of assemblies of proteins
or nucleoproteins, take on a range of unique configura-
tions or conformational states as they go through their
functional cycles1. These states are typically character-
ized by different spatial constellations of relatively rigid
domains, and can be organized in a state space according
to the continuous motions of each domain along a unique
coordinate. Specific sequences of the states in this space
form pathways along which the molecular machine may
transform. When energetics of states are known, in terms
of the machine’s free-energy landscape, a path is sin-
gled out along which the machine performs its metabolic
function2.

A number of recent studies1,3,4 were inspired by the
realization that it is possible, through the analysis of
experimental data, to gain insights into the rules gov-
erning a molecular machine’s function. In thermal equi-
librium, molecular machines are constantly buffeted by
the random motions of nearby solvent molecules, which
deform them reversibly as they transition via a series
of thermally-driven steps. State-of-the-art single-particle
cryo-EM5–7 is now capable of providing large numbers of
two-dimensional snapshots (i.e., projections) of a molec-
ular machine undergoing this process. When the number
of snapshots is sufficiently large – typically several hun-
dred thousand – they capture virtually the entire range of
conformations accessible in thermodynamic equilibrium.
By virtue of the Boltzmann statistics, the relative num-
ber of sightings in each of these states can be translated
into changes of free energy8,9. Thus, under assumption
of thermodynamic equilibrium, the machine’s free-energy
landscape can be obtained from an experiment. Accurate
estimation of the free-energy landscape for molecular ma-

chines and other biological assemblies is of unparalleled
importance in modern structural biology.

The way to utilize the data from a single-particle cryo-
EM experiment is not easy, however. Ideally, we would
wish to compare 3D structures, but only 2D projections
are accessible experimentally. After each 2D projection
is assigned angles to define its viewing direction on the
2-sphere (S2), a set of projections in close proximity to
one another can be assigned to a unique projection di-
rection (PD)†. For any PD ⊂ S2, the challenge is that
the relationship among the N images therein, repre-
sented as a P pixel array, require an analysis of the point
cloud formed in vector space RP . Similarities between
molecules captured in the same PD, but slightly different
conformations, appear as closeness between correspond-
ing points in this high-dimensional space. Thus, for a
given PD, images of molecules captured in random states
are arranged—by virtue of their similarities—according
to the continuous motions of the molecule’s domains.

The geometric structure formed by such an ensem-
ble is an n-dimensional manifold Ω embedded in a high-
dimensional Euclidean space RP , with an intrinsic dimen-
sion n equal to the number of the system’s independent
molecular degrees of freedom. By choosing a suitable
embedding that maps the data points in Ω into a low-
dimensional Euclidean space, we create the foundation
for the analysis of the molecule’s conformational spec-
trum and free-energy landscape by a machine learning
approach. In the following, we use the term PD-manifold
approach to refer to this strategy. Specifically, it en-
tails the grouping of cryo-EM data into individual PDs,

†A tabulated description of symbols and abbreviations used
throughout this document is available in the Appendix.
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with the subset of images within each PD analyzed via
manifold embedding, and the resulting representations
combined into a consolidated conformational spectrum.
This approach was first introduced by Dashti et al.1 and
is now termed ManifoldEM10,11. Results from previous
ManifoldEM studies on biological systems—including the
ribosome1, ryanodine receptor10 and SARS-CoV-2 spike
protein12—have proven its viability and its potential to
provide new information on the functional dynamics of
molecules.

As manifolds are encountered in many domains of
mathematics, science and engineering13, the aim of di-
mensionality reduction has been widely pursued and
given rise to a number of well-established techniques to
analyze large and complex datasets. Representing data
points on Ω in terms of leading eigenvalues and eigen-
vectors gives valuable insights into its intrinsic structure,
with these relationships having been well studied in the
context of spectral geometry14. In the analysis of cryo-
EM data, both linear3,15–21 and nonlinear1,10,20,22 dimen-
sionality reduction methods have been applied, primar-
ily principal component analysis23 (PCA) and diffusion
maps24,25 (DM), respectively. Both approaches allow an
analysis of the data points in Ω as embedded in RN ,
whose entries are the first N eigenvectors of the respec-
tive graph, and noting that only a leading subset of these
are needed for retrieving the conformational spectrum.

In the PCA approach, eigenvectors are obtained from
the covariance matrix, whereas DM approximates the
eigenfunctions of the Laplace-Beltrami operator (LBO)
on Ω, sampled at the given data points. Some techniques
are not so easily classified, however, such as the method of
Laplacian spectral volumes4, which relies on both linear
and nonlinear dimensionality reduction. The application
of these methods can further be classified based on their
type of data input – generating embeddings from either
2D projections straight from a cryo-EM experiment (i.e.,
the ManifoldEM approach), or 3D density maps which
have been reconstructed from those projections4,26–29.
Regardless of the approach, since the intrinsic structure
of such manifolds formed by the data is unknown, these
competing reconstruction methods cannot be immedi-
ately validated or informatively compared using exper-
imental data alone. They instead require careful evalua-
tion using appropriate synthetic ground-truth datasets.

The purpose of the present study is twofold. For
our first endeavor, we provide a heuristic investiga-
tion of the manifolds obtained from synthetic quasi-
continuous ground-truth datasets, with properties en-
dowed as is anticipated from cryo-EM visualization of
biological molecules. To this end, we create several state
spaces by simulating a molecule with movable domains,
each having undergone a series of independent confor-
mational motions (CMs), with the number of CMs con-
structed for each state space defining the intrinsic di-
mensionality of the dataset. We then determine how
these quasi-continuous motions are reflected in the low-
dimensional representations of the manifold’s spectral ge-

ometry, obtained by linear or nonlinear dimensionality
reduction using kernel methods. For either construction,
we derive an explicit expression to account for the geo-
metric structures observed, and describe how to interpret
this information as it exists on a hypersurface spanned
by multiple degrees of freedom. This heuristic analy-
sis is introduced as a clean slate free from assumptions,
aiming to further investigate—using ideal data—the fea-
sibility of manifold embedding techniques under realistic
experimental conditions, while exposing any intrinsic un-
certainties that may arise. Recently, several issues and
limitations have been documented11 in the ManifoldEM
framework, further amplifying the motivation of our cur-
rent pursuit.

For our second endeavor, we introduce a novel method-
ology (which we will term ESPER: “Embedded sub-
space partitioning and eigenfunction realignment”) for
extraction of conformational information from specific
subspaces of PD-manifold (ΩPD) embeddings, which
we use to generate the molecular machine’s free-energy
landscape and corresponding 3D movies depicting its
function. Whereas the previous approach1,10,11 recon-
structs images via nonlinear Laplacian spectral analysis30
(NLSA) in an additionally embedded space spanned
by one or more CMs, ESPER instead captures each
CM directly from the initial embedding while retain-
ing the original cryo-EM images. In addition, several
novel operations and refinements to the existing PD-
manifold approach are introduced, including a previously
unaccounted-for high-dimensional eigenbasis transforma-
tion that we deem essential for correctly recapitulating
ground-truth information, as well as identification of the
proper 2D subspaces required to adequately capture each
CM. We demonstrate that this alternative methodology
provides conformational movies of significantly improved
quality, further enabling the use of efficient strategies for
generating multidimensional free-energy landscapes not
accessible via the founding ManifoldEM framework. Ul-
timately, we will show that, when certain requirements
are met in the quality and structure of a dataset, ES-
PER offers an alternative strategy with many benefits
compared to the current ManifoldEM approach.

METHODS

We first introduce a framework for the creation of syn-
thetic ground-truth single-particle cryo-EM datasets in
the form of 2D projections of 3D electron density maps
arising from a quasi-continuum of atomic structures31,32.
(Note that in reality cryo-EM data represent projections
of the electrostatic or Coulomb potential distribution,
which is distinct from the electron density distribution
“seen” by X-rays. However, for the present analysis, this
distinction is irrelevant). To begin, a suitable macro-
molecule is chosen as a foundational model, defined by
available structural information in the form of 3D atomic
coordinates from the Protein Data Bank33 (PDB). Us-



Geometric machine learning informed by ground truth 3

ing this initial PDB structure as a seed, a sequence of
states is generated by altering the positions of specific do-
mains of the macromolecule’s structure. To mimic quasi-
continuous conformational motions, we used equispaced
rotations of the domains about their hinge-residue axes.
The number of these mutually independent conforma-
tional motions† defines the intrinsic dimensionality n of
the system. By exercising these domain motions inde-
pendently in all combinations, a set of atomic coordinate
structures in PDB-format are generated. In sum, this
quasi-continuum of states spans the molecular machine’s
state space.

For this work, the heat shock protein Hsp90 was chosen
as a starting structure due to its simple design, exhibit-
ing two arm-like domains (chain A and B, containing 677
residues each) connected together in an overarching V-
shape34. In vivo, these arms are known to close after
binding of the molecule with ATP, with Hsp90 acting
as a chaperone to stabilize the structures of surrounding
heat-vulnerable proteins. During its work cycle, Hsp90
naturally undergoes large conformational changes, tran-
sitioning from its two arms spread open in a full V-shape
(inactive state) to both arms bound together along the
protein’s central line of two-fold symmetry (active state)
following ATP binding. We initiated our workflow with
the fully closed state via entry PDB 2CG9, whose struc-
ture was determined at 3.1 Å by X-ray crystallography35.

Casting Hsp90’s biological context aside, liberties were
taken in the choice of the synthetic model’s leading de-
grees of freedom. Instead of a single conformational mo-
tion (arms open to closed, as in vivo), we decided to
create three easily-identifiable and fully-decoupled do-
main motions, which we refer to as CM1, CM2 and CM3.
Each CM was designed to cover a unique range of mo-
tions, with the cascade of overlaid states making up CM1

occupying the largest spatial region, followed in magni-
tude by CM2 and then by CM3. Using combinations of
these CMs, three synthetic state spaces were generated,
with intrinsic dimensionalities of n = 1, 2, 3. This was
achieved by changing the positions of the first, the first
two, or all three regions defined as rigid domains in their
given ranges monotonically and (in the latter two cases)
independently. Importantly, in view of a later discus-
sion of boundary conditions, there is no steric hindrance
between domains within the ranges of their motions.

In the following analysis, these state spaces are termed
SS1, SS2 and SS3, and defined by: (1) 20 states exhibit-
ing one degree of freedom (CM1); (2) 400 states (20×20)
with two degrees of freedom (CM1, CM2); and (3) 1000
states (10×10×10) with three degrees of freedom (CM1,
CM2, CM3), respectively. As a specific example of the
ranges of motion present in SS3, the Root-Mean-Square

†There is a wide range of nomenclature used here between fields
and, in some instances, works by the same author. The follow-
ing are interchangeable: conformational motions; conformational
coordinates; reaction coordinates; collective motion coordinates.

Deviation (RMSD) was calculated36 for the differences
of the atomic coordinates between neighboring states in
each CM, yielding the values of 1.8 Å, 1.3 Å and 0.3 Å
along CM1, CM2 and CM3, respectively; with the RMSD
between the first and last state of each CM (representing
its total span) yielding 15.3 Å, 11.3 Å and 2.4 Å. Alto-
gether, the total spans of these synthetically-constructed
CMs cover a wide range of motions, as one might ob-
serve in experiment. In-depth details for these datasets,
such as exact atomic descriptions of each state, are pro-
vided in the supplementary material (SM) section SM-I‡.
This section should also be consulted for its description of
the indexing used for ordering images within each state
space, which is essential for interpreting color maps in
figures of embedded manifolds throughout this paper.

Our presentation showcases results from detailed eval-
uation of three data types—termed data-type I, II, and
III—with each step incorporating image artifacts and en-
semble statistics in our state-space models as is antic-
ipated in a cryo-EM experiment. Detailed information
pertaining to the construction of each of these three data
types is provided in the supplementary material. We
first investigate the pristine data-type I, which is given
no simulated experimental artifacts or occupancy assign-
ments. Within this construction, for five example PDs,
we examine the manifolds (ΩPD) corresponding to each
of the three state spaces as obtained via the DM frame-
work, followed by a comparison with those obtained via
PCA. Using the eigenfunctions of the LBO, we analyt-
ically quantify the trajectories of our simulated confor-
mational changes as embodied by the spectral geometry
of each ΩPD.

Next, in establishing data-type II, we vary the abun-
dance of images per state in each dataset and add noise
to the images with varying signal-to-noise ratio (SNR),
so as to investigate the influence of statistical coverage
on spectral geometry, and to quantify the robustness of
this geometry in the presence of noise. Following this
analysis, we further increase the presence of experimen-
tal artifacts through application of a contrast transfer
function (CTF) with realistic microscopy parameters and
random defocus variations (within the typical range ex-
pected in the experiment), and apply noise to obtain
an experimentally-relevant SNR (data-type III ). Based
on the findings of our analysis, we finally introduce an
overview of the ESPER method for reconstructing the
conformational motions in the form of 2D and 3D movies
as obtained from a collection of PDs along a great circle
on S2, with occupancies assigned and transformed into a
free-energy landscape (final analysis). All Python scripts
for reproducing this workflow, including extensive docu-
mentation therein, have been made available online32,37.

‡All supplementary material sections will be referenced throughout
this document in form SM-{Roman numeral}. The ordering of
sections in SM is arranged to form a cohesive narrative, separate
from the order each section is introduced in our main text.
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RESULTS

I. Diffusion Maps

A. Data-type I in State Space 1

For its illustrative qualities, we first analyze embeddings
constructed from the eigenvectors obtained from the DM
framework for SS1, representing one degree of freedom
sampled with 20 states in CM1. As the workflow for ob-
taining the general diffusion map for a given dataset has
been described in several publications24,25,38, we sum-
marize these procedures here while providing detailed
information in the supplementary material (see section
SM-X, where we define characteristic parameters such as
the Gaussian bandwidth, ε). Using the DM framework,
we ultimately generate a different embedding for each of
the five PD manifolds, with each of the resultant point
clouds containing 20 points, and each point therein cor-
responding to an image of a conformational state from
CM1.

Upon inspection of each embedding (one per PD) for
suitable ε within the range discovered, we found that the
corresponding eigenvalue spectrum for each ΩPD showed
a staggered falloff in the significance of leading eigen-
vectors, which decayed slowly to zero. Projecting the
resultant set of eigenvectors (forming an eigenbasis) onto
the leading eigenvector (Ψ1) alone presented a skewed
version of the anticipated mapping, with the indices of
states appearing in jumbled sequence near the bound-
aries. When we alternatively projected the data onto
the first two eigenvectors {Ψ1, Ψ2}—forming a 2D eigen-
vector subspace—the conformational signal followed a
parabolic trajectory (as shown in the first subplot of
Fig. 1-B), confirmed by the proper ordering of indices
of points along this curve.

Following this analysis, we next proceeded to investi-
gate all other unique 2D combinations of eigenvectors.
Mathematically, each such mapping to a 2D vector sub-
space is the restriction to the N -dimensional embedding
of the projection of RN onto R2; given by {Ψ1, Ψ2, ...,
ΨN} 7→ {Ψi, Ψj}, where i < j. (For expediency, we will
use the term subspace to specifically refer to a subspace
of an embedded manifold). As seen in Fig. 1-B, a subset
of the canonical Lissajous curves39 emerged across the
2D subspaces of each ΩPD, with the curves in this set
having the form

Lp,q = {cos(pπx)× cos(qπx) | 0 ≤ x ≤ 1; p 6= q ∈ Z+}

where the operator × denotes the Cartesian product40.
The appearance of these Lp,q curves—which are the

composite of sinusoids—aligns with known attributes of
the Laplace-Beltrami operator. Specifically, the func-
tions ψk = {cos(kπx) | 0 ≤ x ≤ 1; k ∈ Z+} are the
canonical eigenfunctions of the LBO on the interval [0,
1] subject to Neumann boundary conditions41, with a
metric tensor g equal to identity (see section SM-XIII
and SM-XIV). By relying on our privileged knowledge of

the ground-truth sequential ordering of CM states, we
were able to further investigate these underlying sinu-
soidal forms. For demonstration, we plot each of the
1D points in a given eigenvector as a function of a uni-
form index I ∈ [1, 20] (for the 20 total states in SS1),
making sure that the ordering of the points in 1D fol-
lows the sequence assigned by the ground-truth index of
its corresponding image along CM1. As seen in Fig. 1-
A, when the collection of points in Ψk are ordered ap-
propriately, the eigenfunction’s sinusoidal form emerges
along the full extent of the degree of freedom present (i.e.,
I ∈ [1, 20] 7→ x ∈ [0, 1]).

Of course, as the points in an experimental dataset
naturally arrive in unordered sequence, one would have
to properly sort the image indices to recognize these si-
nusoids; here, for example, there are 20! sequences to
consider. In the application, even if an approximation
of this sequence were obtained, then in the presence of
duplicate CM states (which we anticipate in an experi-
ment), each sinusoid would be irregularly stretched along
the x-axis where those duplicate states occurred, form-
ing an unwieldy distorted sinusoidal form. However, as
the points in each Ψk are always scrambled in the same
order in all eigenvectors, the composite of any two will
always exist in a readily identifiable Lp,q form. For these
composites, we found that CM information is portrayed
most simply (without overlap) along a specific subset of
L, here as seen across the set of 2D subspaces defined in
pairwise combination with the leading eigenvector; i.e.,
({Ψ1, Ψ2}, {Ψ1, Ψ3}, ..., {Ψ1, Ψg}), where g is the in-
dex of the smallest non-zero eigenvalue. Specifically, this
subset Tk ∈ L corresponds to the known Chebyshev poly-
nomials of the first kind42, of which we observed that the
parabolic form is the lowest-order member present in each
ΩPD embedding.

Given their significance, these 2D subspaces have sev-
eral important properties worth highlighting for their
eventual use (or avoidance). First, note that for each si-
nusoidal subplot in Fig. 1-A, points are equispaced along
the x-axis while maintaining the proper sinusoidal form
on the y-axis, in correspondence with the uniform rota-
tions of the corresponding atomic-coordinate structures.
However, due to the Cartesian product, only non-uniform
spatial relationships exist between neighboring states in
each Lp,q. Analytically, this relationship is described by
a non-isometric mapping, where lengths in the domain
Xa are not preserved in the codomain X = Πa∈AXa,
and naturally arises when taking a set (indexed via A)
of Cartesian products (Π) operating on cosine functions
Xa = {cos(kπx) | x ∈ [0, 1]; k ∈ Z+} that are each uni-
formly occupied with a finite number of datapoints. As
shown in Fig. 2-A, the spacing between points in L1,2,
which is the composite of two such sinusoids, has an in-
trinsically nonuniform spatial distribution, with the den-
sity of points similarly arranged as seen in the corre-
sponding point clouds.

We denote this aspect with the term nonuniform rates
of change. As a potential remedy, we investigated the



Geometric machine learning informed by ground truth 5

FIG. 1: Analysis of eigenfunctions for PD1 in SS1 (i.e., 20 states total making up one degree of freedom). On the left [A] are
the sinusoidal forms {cos(kπx) | k ∈ Z+ ≤ N} of each eigenvector Ψk that emerge when points (corresponding to images) in
each Ψk are ordered precisely in the sequence in which their ground-truth images were constructed. Regardless of any
knowledge of such a sequence, the composites of these eigenvectors will always form well-defined geometries (via the Lissajous
curves), as shown in [B]. In the first row are the Chebyshev polynomials of the first kind, of which the parabola {Ψ1, Ψ2} is
the simplest mapping of the conformational information present. As is explained below, {Ψ2, Ψ4} and {Ψ3, Ψ6} represent
parabolic harmonics of the {Ψ1, Ψ2} parabola, which obfuscate the CM content. Finally, note the nonuniform rates of
change along each Lissajous curve – where it can be seen, for example, that points along the {Ψ1, Ψ2} parabola are most
densely packed near the boundaries and vertex.

use of an inverse-cosine mapping on each eigenfunction.
Fig. S4 provides the results of this transformation on
both (1) the analytically-derived cosine functions k ∈
{1, 2} and (2) the SS1 eigenfunctions obtained by ap-
plying DM on images in PD1. The first two subplots in
Fig. S4 further highlight the remarkable fidelity of the
DM eigenfunctions of the graph Laplacian to the analyt-
ical form of the LBO, while the third subplot illustrates
the results of inverse-cosine transformation. As can be
seen, this mapping presents the coordinates of each eigen-
function in a space with uniform rates of change, consis-
tent with the ground-truth relationships between atomic-
coordinate structures. We will leverage this aspect later
in our framework, and indicate any eigenvectors Ψi under
this transformation with the insignia Φi.

Next for consideration, as seen in Fig. 1-B, there exist
several parabolic trajectories scattered throughout the
2D subspaces of a given ΩPD. As confirmed by the in-
dices of points and the corresponding color map along
each curve, only the first of these parabolas describes the
full extent of the conformational motion present mono-
tonically, while all other trailing parabolas display a non-
monotonic signal. As a specific example, Fig. 2 shows
that the first three such parabolas can be generated via
L1,2, L2,4 and L3,6 – which repeat the conformational
information once, twice, and three times, respectively,
within one span of the parabolic trajectory.

As a consequence, only the mapping from the sinu-
soids to the first parabola in this set is bijective (injective

and surjective)40, with all other mappings to higher-order
parabolas non-injective surjections. Importantly, since
the Cartesian product of continuous functions is contin-
uous and projections from product spaces are also con-
tinuous, this bijection further meets the requirements of
a homeomorphism: a bijective correspondence that pre-
serves the topological structures involved40. We denote
the higher-order parabolas (formed via the non-injective
surjections) as parabolic harmonics, which do not pre-
serve topological structure and must be avoided when
mapping a given CM; a problem that becomes more chal-
lenging in the following subsections as more degrees of
freedom are added to the system.

We next compared these sets of 2D subspaces among
the five PDs, and found only subtle differences in the
distribution of their point clouds. It is important to un-
derscore here the natural discrepancies between each ΩPD

that should be expected, which will continue to manifest
in several significant forms throughout this analysis. Nat-
urally, as each 2D projection provides an incomplete rep-
resentation of the underlying 3D density map, depending
on the type of motion and its component along the PD
under investigation, ground truth is preserved to different
degrees. Going forward, we will refer back to this notion
under the label PD disparity. This disparity affects all
ΩPD characteristics, and will become more relevant as
we investigate the embeddings of datasets with multiple
degrees of freedom.
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FIG. 2: The analytical generation of the Lissajous curve L1,2 = {cos(πx)× cos(2πx) | uniform x ∈ [0, 1]}, where L1,2 ∈
([−1, 1]× [−1, 1]) is shown in [A]. Note the naturally-induced nonuniform spacing between points near the boundaries and
vertex of the parabola. As a simple demonstration, we also fit this curve with the Chebyshev T2 polynomial, which is a subset
of the Lissajous curves; however, T2 does not share the same nonuniformity in spacing as L1,2. In [B], the parabolic
harmonics are likewise generated for L2,4 and L3,6. While the same x-coordinates were used to generate all underlying cosines
for parabolas in both [A] and [B], more than one point in the domain ends up mapping to each coordinate of these parabolic
harmonics. As such, these harmonics obfuscate the true conformational information, which is intact on L1,2.

B. Data-type I in State Space 2

To further understand these conformational-variation
signals with increasing intrinsic dimensionality n, we
next investigated the embeddings generated for SS2.
As seen in Fig. 3-A, by plotting the points in each
eigenvector in the specific ground-truth sequence con-
structed for CM1 against a uniform index (now for the
400 states in SS2; i.e., {1, 2, 3, ..., 400}), a similar but
now interspersed pattern of sinusoids appeared. Specif-
ically, the appearance of the sinusoids (with increas-
ing k ∈ Z+) only manifested in a subset of all eigen-
vectors present, while for all other eigenvectors outside
of this set, more arcane patterns emerged. Following
this observation, we next reordered the indices of points
within all eigenvectors to instead correspond with the
specific ground-truth sequence constructed for CM2 (i.e.,
{1, 21, 41, ..., 381}, ..., {20, 40, 60, ..., 400}). The output of
this operation can be seen in Fig. 3-B, which mani-
fested a new subset of interspersed sinusoids, with in-
creasing k′ ∈ Z+ independent from the previous subset;
and inhabiting only those eigenvectors in the comple-
ment of the CM1 subset. By induction—based on these
observations—we conclude that for n degrees of freedom
in a given dataset, there must be n independent sets of
these sinusoids {cos(kπxq) | q ∈ n}, with each set inter-
spersed throughout the collection of available eigenvec-
tors {Ψi | i ∈ N}.

Following our previous discovery of a single set of or-
thogonal Chebyshev polynomials spanning specific 2D
subspaces of SS1, we next investigated whether similar

patterns existed in SS2. In doing so, we found that
for every conformational motion present in a given state
space, there exists a corresponding set of Lissajous curves
interspersed across specific {Ψi,Ψj} projections of the
N -dimensional embedding. Specifically, in the case of
PD1, independently projecting the data for SS2 onto
the planes spanned by its {Ψ1,Ψi} and {Ψ2,Ψj} com-
binations (where i > 1; j > 2) revealed a unique set
of Chebyshev polynomials, with the sequence of points
along these trajectories corresponding to CM1 and CM2

(Fig. 4). With this knowledge in hand, we can now com-
pare the subset of eigenfunctions as obtained in either
the reference frame of CM1 (Fig. 3-A) or CM2 (Fig. 3-
B) with the Chebyshev polynomials in Fig. 4. Indeed,
each Chebyshev polynomial mapping CM1 information in
Fig. 4 (visualized with subplots enclosed by blue boxes)
corresponds to the subset of sinusoidal eigenfunctions
which emerged in the reference frame of CM1 in Fig. 3-A;
with similar relations holding for CM2 in Fig. 3-B. (For
convenience, we will refer to a set of Chebyshev polyno-
mials corresponding to a given CM as the conformational
modes). Thus, even though the knowledge required to
view these CM sinusoids is unavailable outside of ground-
truth studies, our analysis confirms that these CM rela-
tionships are ever-present, and further, that we can rely
on their existence—via the composites of carefully cho-
sen eigenvectors—to elucidate conformational type and
order.

Combining this empirically-obtained knowledge with
our a priori understanding of the eigenfunctions of the
LBO on known domains, we were able to intuit the ana-
lytical form of these ΩPD eigenfunctions. A detailed ex-
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FIG. 3: Visualization of eigenfunctions for PD1 in SS2 (i.e., 20× 20 = 400 states total making up two degrees of freedom). On
the left [A] are the sinusoidal forms {cos(kπx) | k ∈ Z+} that emerge for only a specific subset of eigenvectors
{k = 1, 3, 4, 6, 7, 9, ...} when points in each Ψk are ordered precisely in the sequence of CM1 (as assigned when the
ground-truth images were initially constructed). Likewise, in [B], when points in each Ψk are instead ordered precisely in the
sequence of CM2, a new set of sinusoids emerge {k = 2, 5, 8, ...} precisely for those remaining Ψk not in the previous CM1

subset. Hence, it can be seen in [A] and [B] that by systematically ordering the points in each eigenvector in sequence along
each degree of freedom present, the corresponding set of sinusoids emerge in the frame of reference of that degree of freedom.
However, as stated for SS1, such frames of reference are unavailable a priori.

position of this discovery is provided in section SM-XIV,
showing how the canonical eigenfunctions on a rectan-
gular domain transform as the data type is translated
stepwise from atomic models to 3D density maps to 2D
projections. In close approximation, the leading ΩPD

eigenfunctions are of the form

Ψi = cos(θ)cos(vπx) + sin(θ)cos(wπy) = Aψv +Bψw

such that a given eigenvector Ψi may contain some linear
combination of n canonical interval-like eigenfunctions
{cos(kπxq) | k ∈ Z+} corresponding to each degree of
freedom xq ⊂ Rn. In Fig. S26, we use this explicit form
to near-perfectly emulate the heuristic results obtained
in Fig. 3 and Fig. 4. We also show that the these
coefficients are conserved across pairs of eigenvectors
(i.e., A2 +B2 = 1), such that the base functions Ψ′i = ψv

and Ψ′j = ψw can be expressed as a rotation Ψ = RT Ψ′,
having the form[

Ψi(θ)
Ψj(θ)

]
=

[
cos(θ)ψv + sin(θ)ψw

−sin(θ)ψw + cos(θ)ψv

]
From our analytical expression, it is clear that depending
on the PD, CM information – pertaining to each of the
system’s degrees of freedom – will lie on some linear com-
bination of the embedded manifold’s orthogonal eigen-
vectors. This feature is seen most strikingly in {Ψ3,Ψ4}
of PD3 (Fig. S5), where the parabolic surface described

by the Chebyshev polynomial is significantly tilted out
of alignment with the plane of the 2D subspace contain-
ing it. Similar instances, albeit in more subtle form, also
arise for surfaces in the remaining three PDs of Fig. S5.
In section SM-XIV-C, we demonstrate that this feature
is a result of PD disparity. Specifically, we generate an
embedding (via DM) of the SS2 collection of 3D electron
density maps (EDMs, from which the PD datasets origi-
nate), and demonstrate near-perfect decoupling of all co-
sine eigenfunctions such that they become independent
eigenvectors. Thus, it is clear that the need for eigen-
function realignment is due to the change in interatomic
distances dependent on projection direction (Fig. S25).
This disparity among PDs is inevitable, and poses a fun-
damental problem that must be addressed.

As a remedy to this problem, we aim to stitch the
CM information of each ΩPD together into one consoli-
dated orthogonal coordinate system. As already shown,
since each CM is represented by a set of orthogonal si-
nusoids (one per degree of freedom), we thus aim to iso-
late these sinusoids in their complete form within each
PD-manifold eigenbasis. As detailed in section SM-XIV,
by use of appropriate rotation operators Ri,j , the sum-
mands within each eigenfunction pair can be maximally
separated among a set of eigenvectors (e.g., Ψi = ψv and
Ψj = ψw) such that an ideal (i.e., canonical) eigenbasis
is recovered. As a result of this decoupling of eigenfunc-
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FIG. 4: A subset of the space the 2D subspaces for PD1 in SS2. As demarcated in red and blue boxes, a set of
conformational modes exists for both CM1 (red boxes, {Ψ1,Ψi}) and CM2 (blue boxes, {Ψ2,Ψj}; where i > 1 and j > 2),
interspersed throughout each row. The indices for points in each set of polynomials can be visualized here via the
corresponding color mapping, where CM1 points follow along the full spectrum of colors (i.e., a rainbow with indices 1-400)
while CM2 points are approximately uniform in color map value (i.e., magenta with indices a multiple of 1-20, with all other
colors similarly underlaid). Additionally, note the occurrence of the first parabolic harmonic for CM1 located at {Ψ3,Ψ6}. See
Fig. S5 for similar plots obtained for the remaining four PDs.

tions onto a set of appropriate eigenvectors, each cor-
responding parabolic surface becomes manually aligned
within its 2D subspace, such that the projected structure
is again that of the 2D Chebyshev parabola carrying in-
formation about a single CM along its curve. In this
projected view, states differing in coordinates that are
orthogonal to the projection plane (and thus describe ul-
terior CM information embedded on a higher-dimension
surface) overlap – a feature we will take full advantage of
later when generating 2D conformational movies. Thus,
as long as each parabolic trajectory corresponding to a
given CM is aligned with the plane of an independent 2D
subspace, we can restrict our study to an analysis of only
a few essential subspaces.

To provide rationalization for this technique, Fig. 5-
A shows the eigenvectors for the highly-misaligned PD3

eigenbasis, ordered along CM1. As seen in the first col-
umn of Fig. 5-A, while the sinusoids for Ψ1 = {cos(πx) |
CM1}, Ψ4 = {cos(2πx) | CM2} and Ψ5 = {cos(3πx) |
CM1} are in agreement with expectations, the graphs of
Ψ2 = {cos(2πx) | CM1} and Ψ3 = {cos(πx) | CM2}
appear heavily deformed. As a direct consequence, any
Lissajous curve that inherits one of these deformed sinu-
soids (e.g., any subspace composed in combination with
Ψ2 or Ψ3) will be misaligned with respect to its ideal
form (Fig. 5-B).

Given this insight, we now introduce a method for cor-
recting these misalignments using orthogonal transforma-
tions. Specifically, we apply a d-dimensional rotation op-
erator of sufficiently large dimensions to single-handedly
reorient all aberrant surfaces in their respective 2D sub-
spaces. The results of this operation on the embedding
associated with PD3 can be seen in Fig. 5-B and Fig. 5-C;
before and after applying a 5D rotation matrix, respec-

tively. Mathematically, this d-dimensional rotation is a
subgroup of the orthogonal transformation in d dimen-
sions with determinant one. These orthogonal transfor-
mations are linear and represented by a d × d matrix O
with the property O × OT = I, where OT is the trans-
pose of O and I is the identity matrix. As a consequence,
orthogonal transformations leave lengths and angles be-
tween vectors unchanged. Each such matrix O can fur-
ther be represented by d(d − 1)/2 rotation sub-matrices
Ri,j , with each sub-matrix parameterized by a unique an-
gle and operating on a specific plane. For the specific case
of the 5D rotation matrix used in Fig. 5, there exist 10
rotation sub-matrices in total, with each corresponding
to a specific planar rotation on the eigenbasis. Of these
10 matrices, we found that only one had to be altered to
achieve the results shown, having general form

R2,3(θ) =


1 0 0 0 · · ·
0 cos(θ) −sin(θ) 0 · · ·
0 sin(θ) cos(θ) 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


As this R2,3(θ) operator corresponds to transformations
performed solely on Ψ2 and Ψ3 (row 2 and 3, respec-
tively), eigenvectors previously identified as problematic
in PD3 are thus isolated. The result of this transforma-
tion on the full set of eigenvectors can be seen in the three
columns of Fig. 5-A, which visualize the R2,3(θ) rotation
under 0°, 10° and 20°, respectively (where only Ψ2 and Ψ3

undergo change, as expected). Intuitively, the outcome
of this operation is equivalent to the traditional notion of
a vector rotation (for example, consider e1 = (1, 0) ∈ R2:
just as e1 is given some combination of the secondary di-
mension y with its initial dimension x during a rotation
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FIG. 5: Application of a 5D rotation matrix R2,3(θ) on the embedding generated for PD3 from SS2. The three columns in
[A] display the individual eigenfunctions (as plotted by indices corresponding to the CM1 frame of reference) before the
rotation is applied, at R2,3(10◦), and finally at R2,3(20◦), respectively. Note that R2,3(20◦) maximally decomposes Ψ2 and Ψ3

into unique sinusoids (recalling that the planar distribution in Ψ3 is in fact a sinusoid when visualized in the CM2 frame of
reference, and vice versa for Ψ2). The before and after effects of these rotations on the Lissajous curves can likewise be seen
in [B] and [C], respectively. Applying R2,3(20◦) properly orients both parabolic surfaces corresponding to CM1 and CM2

(denoted with red and blue boxes, respectively), such that the eigenvectors are orthogonally aligned with the eigenbasis of the
CMs.

(via vector additions and scalar multiplications), so too
is Ψ2 weighted with Ψ3, and vice versa. As seen in Fig. 5-
A, along the way in reaching R2,3(20◦), Ψ2 and Ψ3 have
effectively transferred between each other an equal share
of their initial content via a series of continuous defor-
mations, with each initial eigenvector thus sharing some
combination of the other’s initial sinusoidal form (as is
also analytically demonstrated in Fig. S20-C). After this
exchange, the initially overlapping sinusoidal information
contained in part between Ψ2 and Ψ3 is maximally sepa-
rated between both eigenvectors, ultimately resulting in
the alignment of all corresponding Lissajous surfaces with
their 2D subspaces (Fig. 5-C), as desired. Later in our
analysis we will return to this topic under the moniker
eigenfunction realignment, and describe a strategy for
automating these corrective actions for noisy datasets.

C. Data-type I in State Space 3

We next investigated the 1000 states making up SS3. As
before, the eigenvalue spectra were similarly found to be
slowly decreasing, but falling off more gradually than in
the SS1 and SS2 spectra. Additionally, for each confor-
mational motion present in a given PD dataset (this time
for CM1, CM2 and CM3), a set of unique Lissajous curves
were again found spanning specific 2D subspaces of the
embedded manifold, with the Chebyshev subset explicitly
describing the corresponding CM along a 2D trajectory
explicitly. Fig. S7 shows the set of 2D subspaces where
these modes exist for PD5. To note, due to the increased
complexity of the SS3 state space, these patterns were
much more interspersed throughout the N -dimensional
embedding, but still followed a similarly predictable or-
dering. In addition, due to the relatively small range of
motion exhibited by the third conformational domain (as
seen from these PDs and as designed in the ground-truth
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structures), all CM3 modes were found in higher-order
eigenvectors; e.g., Ψ5 and higher for these five PDs. As
similar patterns were identified in SS3 as in previous ac-
counts, for the remainder of our paper, we will hone our
focus on mapping datasets generated specifically from
SS2.

II. Principal Component Analysis

Data-type I in State Space 2

Following our analysis of manifolds using the DM frame-
work, we next performed linear dimensionality reduction
on the SS2 images in PD1 using PCA. Instead of defin-
ing the Gaussian kernel as previously used in the Markov
transition matrix, we performed PCA on the array of
all pixels, with dimension defined by the number of im-
ages and pixels in each image (i.e., on a dataset Z of
dimension P×N). Before embedding, we standardized
the images in each dataset by removing the mean and
scaling to unit variance, and generated eigenfunctions of
the resultant N×N matrix ZTZ. To note an important
comparison between PCA and DM, the matrix ZTZ is
symmetric and positive semi-definite (i.e., all eigenvalues
are non-negative)43, which is also the case for the Markov
transition matrix used in the DM framework.

A set of different projections of this embedding as ob-
tained from selected eigenvectors (i.e., principal compo-
nents, PCi) can be seen in the first column of Fig. S17,
with results from DM similarly presented for comparison
in the fourth column. As demonstrated, the eigenvalue
spectra and eigenvectors obtained from performing PCA
and DM are almost identical, except for subtle differ-
ences in the spacing between states and boundaries for
the pristine case (SNR∞, i.e., data-type I). These simi-
larities align with our a priori knowledge of the existence
of quadric surfaces for positive semidefinite matrices, as
described in the section SM-XII). The similarity between
these manifolds holds for all subspaces explored, and, as
will be seen in the next section, the distinction is dimin-
ished in the presence of noise. The results of PCA versus
DM on SS1 and SS3 show similar behavior.

III. Influence of SNR and Statistical Coverage

Data-type II in State Space 1 and 2

As SNR is an important attribute of any experimental
dataset, we next sought to understand how the structure
of these manifolds change with varying SNR and state
space coverage. To this end, we first compared the mani-
folds from PCA and DM for PD1 with additive Gaus-
sian noise (generated as described in section SM-IV),
such that the images in each dataset had unique SNR
∈ {1, 0.1} consistently applied to all images in a set. The
results of this procedure can be seen in the remaining

columns of Fig. S17. For both dimensionality reduction
techniques, the fidelity of the resulting spectral geome-
try to the state space ordering decayed with increasing
noise level. Within low-SNR regimes, the behavior of the
embeddings from PCA and DM were highly consistent,
with DM generated within its optimal range of Gaussian
bandwidth. Overall, the corresponding spectral geome-
try obtained from each framework became increasingly
similar as the SNR was decreased (Fig. S18).

We next investigated the effects of varying state space
coverage across several SNR regimes, and its effects on
the robustness of the corresponding manifolds produced
by PCA. As the choice of PCA or DM proved irrele-
vant in these low-SNR regimes, PCA was chosen here
so as to bypass uncertainties introduced by the need of
additional parameters in DM; i.e., the Gaussian band-
width. For this study, we used the 20 images in PD1

representing SS1 (i.e., one full range of conformational
motion), and varied both the number of times (τ) these
M = 20 ground-truth states were duplicated as a group—
with each instance having a different realization of addi-
tive Gaussian noise—and the SNR of each image therein.
Here, Gaussian noise of constant variance was applied
for each SNR regime and uniquely added to each of the
τM = N images independently, as shown in Fig. S8. An
excerpt from the results of our analysis is shown in Fig. 6,
where a highly structured pattern emerged. Specifically,
when increasing levels of noise was added to each image
(decreasing SNR), increasingly larger values of τ were
required to reestablish coherent structure in the spectral
geometry; i.e., the set of Lissajous curves and correspond-
ing Chebyshev polynomials.

To quantify these relations, each member of the set of
PCA-embedded manifolds in a τ -series was fitted with a
set of leading Chebyshev polynomials, as seen in Fig. S9
for SNR = 0.1. The coefficient of determination (R2),
which can be interpreted as the proportion of variance in
one variable accounted for by another44, was then com-
puted for each mode therein. The resultant trends across
several SNR regimes are plotted in Fig. S10. Our findings
show that as τ is increased, the rate at which the geome-
try of each subspace reaches its most stable regime is de-
pendent on SNR. A critical τc value was determined both
visually and analytically by assessment of the asymptotes
for each SNR regime, beyond which larger values of τ pro-
vided no further improvement to the spectral geometry.

Further, across all of these regimes, each subsequently
higher-order Chebyshev polynomial required a larger
value of τc to be properly resolved (Fig. S10-A), which
is a consequence of higher-frequency patterns requiring
more points to resolve when the number of their points
(i.e., images) is held constant. For our purposes, recall
that the accurate acquisition of only the parabolic tra-
jectory is relevant. As τc fluctuates based on numerous
unknowns in the experiment, determination of its value
for a given experimental dataset is infeasible. Parame-
ters influencing τc include not only unknowns such as the
number of ground-truth states M and SNR regime, but
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FIG. 6: Set of {PC1, PC2} subspaces produced by PCA from PD1 images in SS1 over a range of SNR values and state space
coverage. As can be seen in the columns, the fidelity of the point-cloud distribution in each subspace to the parabolic form
increasingly deteriorated due to decreasing SNR regimes. However, as the M = 20 state space was populated by increasing
values of τ in each of these SNR regimes, the intrinsic parabolic structure of the embedding reemerged. To be precise, 5M
represents five exact copies of the 20 SS1 images (τM = 100 images), with unique Gaussian noise added to each image
independently as prescribed by its SNR regime. It can be seen here that all values of τ shown (up to 50) in the SNR=0.01
regime are too low for recapitulating the intrinsic parabolic structure of the embeddings, and, as further illustrated by the
color mapping of their points, no sensible ordering of snapshots can be ascertained within these subspaces.

also the intrinsic dimensionality of the dataset and the
free energy of the system.

We next describe specific characteristics of CM sub-
spaces obtained from datasets generated with these
noisy-duplicate images. Specifically, we examine the
parabolas generated via PCA from SS2 PDs with SNR
= 0.1 and τ = 10, which will guide several choices made
for our framework in the following section. Fig. 7 shows
the composite parabolic trajectory and corresponding si-
nusoidal form of each eigenfunction for CM1 and CM2

of PD1, as well as a collection of similar CM subspaces
from randomly-selected PDs. Each subplot has been as-
signed a color map matching the ground-truth sequence
of states of the CM to which it corresponds with this
sequence partitioned into 20 equally-occupied bins (i.e.,
CM states). As can be seen, while each of the two under-
lying point clouds corresponding to a unique eigenfunc-
tion maintains well-defined structure after introduction
of noise, CM state partitioning becomes increasingly dis-
ordered in their composite parabolic point cloud.

Additionally, due to PD disparity, the characteristics
of each CM-parabola can be seen to vary significantly de-

pending on viewing direction. These variations include
average thickness, length, density, trajectory, and spread
of data points in each parabolic point cloud, with aberra-
tions occurring most frequently in CM subspaces gener-
ated from PDs where the apparent range of the given CM
is diminished. As a result, while the CM subspaces for
all PD manifolds carry reliable content for recovery of 3D
density maps along a conformational trajectory, certain
clusters of PDs ⊂ S2 offer less reliable geometric struc-
ture for accurately estimating occupancies of CM states
therein. From these initial observations, it is clear that
effectively delimiting states in these highly-variable sub-
spaces will require robust solutions to be subsequently
explored. As a final note for this section, all trends de-
scribed here for PCA were likewise found to exist for
embeddings of manifolds obtained using DM (Fig. S18).
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FIG. 7: CM subspaces for a set of five PDs generated with SNR = 0.1 and τ = 10 and embedded via PCA. The coordinates
within each point cloud are colored to indicate their ground-truth CM state assignment, such that each point belongs to one
of 20 CM bins, and each bin contains 200 points (with the same coloring scheme used regardless of CM). In [A], the parabolic
CM1 subspace of PD1 is shown along with its two leading cosine eigenfunctions (with each cosine ordered according to its
ground-truth sequence). Similarly, in [B], the parabolic CM2 subspace of PD1 is shown with its own set of leading cosine
eigenfunctions. The remaining subplots show a variety of CM1 [C] and CM2 [D] subspaces for three randomly-oriented PDs,
so as to emphasize the variability in features prevalent in manifolds embedded from noisy images.

IV. Influence of TEM Contrast Transfer Function

Data-type III in State Space 2

Carrying forward our knowledge gained from evaluation
of data-types I and II, we next turn to data-type III for
analyzing the PD manifolds obtained from image ensem-
bles generated with experimentally-relevant CTFs and
SNR as is encountered in a Transmission Electron Micro-
scope (TEM). For these trials, we first generate and ap-
ply a CTF to each image as described in section SM-VI.
Specifically, using images from PD2 of SS2 with τ = 10,
we assign to each image a random defocus value from
the interval [5000, 15000] Å. Such a wide range is usu-
ally chosen to compensate for the zero-crossings of CTFs
where no information is transferred (Fig. S12), with sim-
ilar intervals typically used in modern cryo-EM experi-
ments. Likewise for each image, constant values are used
for voltage (300 kV), spherical aberration coefficient (2.7
mm), and amplitude contrast ratio (0.1) to emulate typ-
ical TEM conditions. These parameters are jointly used
to construct a unique CTF for each image, which is ap-
plied via multiplication to the image’s Fourier transform.
With the collection of images modified by unique CTFs,
additive Gaussian noise is next applied such that the SNR
of each image in the resultant ensemble is approximately
0.1.

We next set out to measure the extent of interference
of the Contrast Transfer Function on the corresponding

manifold for an example PD. However, since the collec-
tion of images are now sampled using a range of defocus
values, they are no longer directly comparable using a
standard distance metric. Instead, an adjustment to the
kernel must first be made to account for our introduction
of CTF. We show here the results of applying the pre-
viously established double-filtering kernel, which ensures
a zero Euclidean distance between any two images that
differ only in defocus1. In application, during each pair-
wise Euclidean distance calculation, the Fourier trans-
form of each image is multiplied by the CTF of the image
under comparison to compensate for the defocus differ-
ence. The corresponding manifold embedding is shown
in Fig. 8, which juxtaposes these results with the same
dataset generated without CTF and using a standard
Gaussian kernel.

As seen on the right-hand side of Fig. 8, there is a
noticeable inward-curling at the ends of the CM sub-
space parabolas generated using the double-filtering ker-
nel. Notwithstanding this artifact, we found that the
double-filter kernel was successful in preserving the most
important aspects of the manifold. This approach also
proved superior to alternative techniques explored, such
as embedding using a standard kernel from sets of CTF-
corrected images. To note, perfect defocus assignments
were used here for CTF correction, when in reality
these values would be estimated first using established
algorithms45–47.
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FIG. 8: SS2 manifold embeddings (PD2, τ = 10, SNR = 0.1) obtained with and without CTF applied, as shown on the right
and left-hand side, respectively. For the case of the embedding obtained from images without defocus, protocols for synthetic
generation follow those established in Fig. S12 (A, B). Likewise, on the right, protocols follow synthetic generation of images
with microscopy parameters as shown in Fig. S12 (D, E). The non-CTF manifold embedding was generated via DM with the
standard Gaussian kernel, while the CTF-manifold embedding was obtained via DM with the double-filtering kernel. On the
top insets, colors displayed represent the ground-truth CM2 bins, while for the bottom insets, for both sides, colors represent
CM1 bins (left) and CM2 bins (right).

V. Overview of the ESPER Framework

Having explored all three data-types including CTF and
noise, we now lay out the ESPER strategy for recovery of
conformational motions in the form of 3D movies and a
corresponding free-energy landscape. This methodology
requires several steps that will be introduced in turn,
with the entire process schematized in Fig. 9.

The general intuition for our approach is as follows.
Ideally, for each ΩPD embedding, we first wish to trans-
late the n conformational-variation signals residing along
a high-dimensional parabolic surface into a rectilinear n-
dimensional state space. To this end, one can imagine
forming a coarse n-dimensional grid along this desired
hypersurface—with each n-cube (bin) on the grid nonuni-
formly stretched to occupy an equal volume as required to
account for nonuniform rates of change along its complex
surface—and accruing the set of points (and thus indices
of corresponding images) falling within each bin’s bound-
ary. This procedure should then be repeated for each
ΩPD independently. To reconcile the contents of these
PD manifolds on S2, which may contain conformational
information along different coordinates due to PD dispar-
ity, the orientation of each n-dimensional grid (and thus
ordering of bins therein) must be aligned so as to match
across all PD manifolds. Next, the set of images belong-

ing to each compiled bin can be combined to reconstruct
a 3D density map of the molecule, with the total image
count used to define a state occupancy. As a result of
this construction, an n-dimensional occupancy map (and
thus free-energy landscape) can be formed, along with a
set of corresponding 3D density maps representing every
state.

In application, however, there are many complications
to this procedure. For one, the desired high-dimension
parabolic surface presents difficulties in both discovery
and direct mapping. Since there are many such potential
subspaces housing parabolic surfaces (even for n = 2)
within the embedding of a given ΩPD, there exists ambi-
guity as to which one contains the desired information,
further exacerbated in the presence of harmonics and ex-
perimental artifacts. In addition, due to the complex
nature of these hypersurfaces—which can vary in fea-
tures ranging from elliptical, to parabolic, to hyperbolic,
and each with boundary aberrations—it is much easier
to instead fit and partition the set of its orthogonal com-
ponents; i.e., the parabolas residing in easily identifiable
2D subspaces. Given this route, several operations can
next be performed on these parabola-housing subspaces
to approximate an idealized, straightened trajectory for
each CM, ultimately allowing the formation of a rectilin-
ear coordinate system when this set of straightened CM
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FIG. 9: Schematic detailing the ESPER workflow for recovery of conformational continuum as informed by our heuristic
analysis. Through this framework, 3D movies and corresponding free-energy landscapes are obtained for the set of
conformational motions in a given dataset. Note that the previous ManifoldEM workflow branches off after completion of step
2 above, and after performing a series of alternative steps required by NLSA, then enters again with our pipeline at step 7,
before splitting off again to form final outputs (as we achieve independently via ESPER) in step 8. As will be described fully
in our Discussion, given certain requirements are met in the quality and structure of a dataset, our method provides an
alternative avenue to NLSA for obtaining conformational outputs within the ManifoldEM framework.

trajectories are recombined. Finally, these rectilinear co-
ordinate systems must be organized in such a way that
CM content is matched across all PDs, and compiled.

Following this rationale, the ESPER approach first
aims to find the set of parabola-housing subspaces (via
least-square conic fits) required for elucidating higher-
dimensional CM information, while accounting for eigen-
vector rotations and carefully eliminating harmonics
[steps 3, 4]. Each parabola-housing subspace is next
transformed (along with its conic fit) via the inverse-
cosine mapping to account for nonlinear rates of change,
with points partitioned into contiguous equal-area bins
[step 5]. Each bin is then filled with a set of image in-
dices corresponding to all points falling within its ge-
ometric bounds. Images belonging to each bin are next
integrated to form the frame of a 2D movie [step 6], which
is used to identify both the type of CM and its direction-
ality (i.e., sense) of its motion [step 7]. As the location of
each point (and thus image index) present in a given CM
subspace is coupled to its coordinates in all other orthog-
onal CM subspaces (on the high-dimensional surface), we
can reconstruct this joint geometrical relationship using
only the intersection of image indices obtained in all pair-
wise combinations of bins spanning all CMs. By means
of this approach, when this information is accumulated
across all PD manifolds, the desired occupancy map and
index sets required for full recovery of 3D electron density

maps in all bins are thus obtained [step 8].
In the following three subsections, we provide a more

detailed description of these steps. For the purposes
of this exposition, we will use SS2 via data-type II for
initial demonstrations of eigenfunction realignment and
subspace partitioning (subsection A and B, respectively),
followed by use of our final analysis data-type (i.e., SS2

via data-type III with free-energy landscape) in subsec-
tion C to furnish final outputs and assess their validity.

A. Eigenfunction Realignment for Data-type II

We describe here our methodology for calculating
the rotations required for eigenfunction realignment of
each embedded ΩPD in the presence of noise with
experimentally-relevant SNR. We consider this calcula-
tion to be the first step in the ESPER framework (i.e.,
[step 3] in Fig. 9). To note, after generation of each em-
bedding from PD-images as previously described [steps
1, 2], our methodology deviates here from the existing
ManifoldEM method1,10,11, which would next move on
to NLSA without accounting for eigenfunction realign-
ment on ΩPD subspaces. First, recall that depending on
the PD, the observed conformational eigenfunctions may
be misaligned with respect to the ideal eigenfunctions of
the LBO, requiring application of a d-dimensional rota-
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tion matrix to align the subspace (Fig. 5). As an exam-
ple, the effects of applying a 4D rotation to the 4D sub-
space for data-type II corresponding to PD2 (containing
all parabolic modes of CM1 and CM2 in SS2) can be seen
in movie M5, where only one of the six required rotation
matrices is altered by 28.65° (with the remaining five un-
altered; i.e., 0°) to single-handedly realign both parabolic
modes (one per CM) to the plane of their respective 2D
subspaces.

Based on this behavior, we have developed a technique
to automate the discovery of the rotations required to
realign essential eigenfunctions in each ΩPD embedding.
This algorithm is informed, first and foremost, by our
heuristic findings of the existence of parabolic surfaces
in each embedding, which correspond to a specific CM.
In the case of noisy data, as each corresponding 2D sub-
space is rotated, it exhibits a unique profile that can be
characterized by a sequence of 2D histograms on that
subspace, with one 2D histogram per each rotation angle
corresponding to a given Rij rotation operator. When we
plot the number of nonzero bins in the corresponding 2D
histogram as a function of rotation angle, the minimum
in this distribution corresponds to the angle required to
properly counter-rotate each 2D subspace by the cur-
rent operator (movie M6). After careful observation of
all PDs across numerous datasets, we have determined
that the exact rotational operators Rij required to ade-
quately rotate each 2D subspace are linked to the indices
of those eigenvectors housing each CM parabola. As a
consequence, we need to first determine the 2D subspaces
housing parabolas, and these are identified via the best
least-squares fits in each eigenvector row (movie M7). A
detailed description for the procurement of this informa-
tion is available in the section SM-XVI, with an example
visualization of this workflow provided in movie M7.

Once these CM subspaces have been isolated, a final
2D in-plane rotation still needs to be applied to orient
the parabola into its canonical form. We thus perform a
least-squares fit Ψfit using the implicit equation of a gen-
eral conic defined by an irreducible polynomial of degree
two

ax2 + bxy + cy2 + dx+ ey + f = 0

This general conic form can account for parabolas, el-
lipses or hyperbolas (discriminant b2− 4ac equal to zero;
less than zero; or greater than zero, respectively). As will
be seen, this flexibility is essential for fitting parabolic-
like point clouds with nonzero discriminant, which are
encountered for point clouds with boundary aberrations,
and especially those obtained from images modified by
the CTF. In this form, the xy-term rotates the graph,
providing for the possibility of encountering subspace tra-
jectories with an axis of symmetry unaligned from the 2D
eigenbasis. This equation can thus be rewritten with a
new set of coefficients48 to effectively rotate the coordi-
nate axes such that they come to alignment with the axis
of symmetry.

B. Subspace Partitioning for Data-type II

Once the required ΩPD eigenfunctions are correctly ro-
tated into a common eigenbasis as defined by the desired
CMs, and each 2D subspace housing CM information is
identified for each PD [steps 3, 4], we next partition these
2D subspaces into contiguous equal-area bins [step 5]
representing a quasi-continuum of conformational states.
Here ESPER differs decisively from the preexisting Man-
ifoldEM workflow encompassing NLSA. To help distin-
guish between these strategies, a brief summary of the
NLSA workflow has been provided in section SM-XVIII.

The motivation for the ESPER subspace-partitioning
approach stems from our analysis of PD disparity in the
presence of noise (as shown in Fig. 7), where it is ob-
served that the ground-truth bins and overall area of each
point cloud manifest in a variety of sizes depending on
PD viewing angle. These observations inspired an area-
based point-cloud fitting approach able to correctly chart
spatial discrepancies while remaining unencumbered by
changing densities (i.e., occupancies) along each trajec-
tory. Fig. 10 provides an overview of our novel strategy
for splitting up each CM subspace into a sequence of
equal-area bins, with subplots detailing recovery of CM1

states and corresponding occupancies for a single PD.
To initiate this procedure, for each CM subspace of a

given ΩPD, we first scale both eigenvectors {Ψi,Ψj} be-
tween [−1, 1] and apply an inverse-cosine transformation
on each: f : {Ψi,Ψj} 7→ {Φi,Φj}. As previously shown
in Fig. S4, it is expected such a mapping will induce a
space with uniform rates of change between states. To
mitigate the overall complexity of operations, the axis of
symmetry of the conic equation (with b′ = 0) is then used
to split the subspace into two halves, such that each half
can be operated on individually. We next apply a ball
tree algorithm49,50 to temporarily prune outlier points
for heightened accuracy during subsequent steps. Specif-
ically, the ball tree approach clusters points in a series
of nesting 1-spheres based on the Euclidean metric, from
which we select only those clusters having a minimum
number of members.

Following this preparation, we define the overall area
of each halved subspace with a polygon enclosing a ma-
jority of our remaining points (Fig. 10-B and Fig. 10-
C). This construction is achieved via the alpha shapes
algorithm51–53: a generalization of the convex hull that
defines the boundaries of the point cloud by a series of α-
discs (1-spheres of radius 1/α), such that an edge of the
alpha-shape (polygon) is drawn between two members
of the point cloud whenever there exists an α-disc con-
taining no members of the point cloud and carrying the
property that the two points lie on its boundary. A fam-
ily of alpha-shapes can thus be defined for each halved
subspace via the α-parameter, ranging from coarse (a
convex hull) to increasingly finer fits around the point
cloud. Within this class of polygons, there exists a mem-
ber providing an optimal level of refinement, in which
the alpha-shape area and point-cloud area are equal52.
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FIG. 10: Overview of area-based method for extracting sequential conformational information from a given CM subspace.
Subplots [A] through [G] display our algorithm’s outputs on the CM1 subspace of an arbitrary PD from data-type II. First,
[A] shows the inverse-cosine transformation and corresponding preliminary fit using an absolute value function. Subplots [B]
and [C] demonstrate the alpha-shape polygon and Φfit trajectory defined on each halved subspace, with the anchor-point
designated within the central alcove. In [D], a ray is shown passing from the anchor-point through the point cloud. At the
current angle θ shown, half of the area of the alpha-shape has been traversed, demarcating the boundary between the 5th and
6th (of 10) CM1 bins. Subplots [E] and [F] compare the ground-truth bins—as visualized via the known sequence of images in
each state—with the final output bins defined via this framework. Finally, the 1D occupancy map is provided in [G], where
the horizontal red line (200 images) represents the ground-truth occupancy assignment per CM1 state.

For our purposes, the determination of a suitable value
for this parameter was automated by generating a se-
quence of alpha-shapes of increasingly finer complexity
up until the resulting alpha-shape – previously defining
one polygon – collapsed into two polygons. Through this
construction, our point cloud is enclosed by a fine poly-
gon representing the key features of its geometric shape.

Next, the general conic fit Ψfit is transformed by in-
verse cosine to form the trajectory Φfit and split along its
axis of symmetry for use on each half of the {Φi,Φj} sub-
space. The intersection of Φfit with the outer boundary of
the alpha-shape is used in combination with the position
of the initial vertex to form a new anchor-point nested
within the central alcove of the point cloud (Fig. 10-B
and Fig. 10-C). For each image-point in the point cloud,
a ray is next drawn connecting the anchor-point with
the image-point, with the intersection of that ray with

Φfit recorded. As a result of this construction, all image-
points are uniquely projected onto the Φfit trajectory.
With each image-point now assigned an index along Φfit,
a method is next employed to partition the trajectory
into segments representing CM states, such that each
image-point is ultimately assigned to a single state. Here,
we define a ray emanating from the anchor-point, initi-
ated with θ = 0° (Fig. 10-D). For each angle θ ∈ [0°, 90°],
the area of the lower sub-polygon formed by the intersec-
tion of the alpha-shape with the ray is determined54 to
record the overall ratio of that sub-polygon to the whole.
We form 10 bins in this fashion along the Φfit trajectory
(per halved subspace), making up 20 bins in total. Fi-
nally, we tally the number of image-points assigned to
each of these 20 bins (as visualized in Fig. 10-F) to form
the 1D occupancy map for the current CM. Importantly,
we store the image indices belonging to each bin along
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the given CM for subsequent use in forming an n > 1
occupancy map (to be detailed in the following section
C).

A comparison of our outputs with ground-truth is pro-
vided in Fig. 10-E and Fig. 10-G, showing an overall
agreement with expectations. To note, we have pro-
grammed these steps to require no intermediate supervi-
sion by using a robust automation strategy, with details
for specific subtasks available in the comments of our
corresponding code37. As a result of this procedure, the
points in the embedding corresponding to each confor-
mational motion are independently lined up within a cor-
responding 2D subspace, such that averaging points to-
gether in that subspace only reveals the conformational-
variation signal corresponding to the current CM. Hence,
images in each bin can next be averaged to generate each
frame of the respective CM’s 2D movie. This process
is then repeated for the 2D subspace where the second
parabolic mode resides (CM2), and so on for higher de-
grees of freedom. The results of this procedure can be
found in supplementary movie M2, where we showcase
2D movies for both CM1 and CM2 as obtained from a
subset of these 126 PDs.

C. Final Analysis – Recovery of 3D Conformational Motions

We demonstrate here the efficacy of our entire frame-
work with a comprehensive dataset of PDs occupy-
ing states in SS2, using ground-truth images modified
with experimentally-relevant CTF and noise. We will
additionally note slight alterations to the previously-
described ESPER methodology [steps 3-6] that are re-
quired for handling our final analysis dataset, which now
includes introduction of CTF as well as noise. Finally,
once 2D movies have been obtained from each ΩPD, we
describe here the conclusion of the ESPER framework via
an efficient method for compiling CM information from
all PDs [step 7] to create a free-energy landscape and
corresponding set of 3D movies [step 8].

First, we note that the minimum number of equispaced
PDs (PDmin) on a great circle required for 3D tomo-
graphic reconstruction at a given resolution is defined by
the Crowther criterion55 PDmin = πD/r. Here D is the
particle diameter (120 Å, as measured in state 20_20 of
SS2) and r is the targeted resolution of the reconstructed
volume (for our purposes, 3 Å as chosen to match the
resolution of our ground-truth maps). According to this
criterion, we generated 126 equidistant PDs spaced ap-
proximately 1.5° apart along one half of a great circle (la-
beled as Great Circle 1 in figures that follow), chosen so
as to avoid redundant information due to diametric mir-
roring. Each of the 400 SS2 states in each of these PDs
was then duplicated based on assignments imposed from
a fictitious occupancy map (see section SM-VII) result-
ing in 4000 images per PD, with each particle modified
by an individual CTF having randomly-assigned defo-
cus [5000, 15000] Å and the same microscopy parameters

as previously described. Finally, additive Gaussian noise
(SNR = 0.1) was applied to each image such that 504,000
unique images were created in total. Euclidean distances
among the 4000 images within each PD were then cal-
culated using the aforementioned defocus-tolerant ker-
nel with matching CTF assignments. Finally, following
the DM framework, a Markov transition matrix was pro-
duced for each distance matrix and diagonalized for sub-
sequent ΩPD analysis.

As was discovered for data-type I and II, we found
that a substantial number of these 126 PD-manifold em-
beddings had misaligned eigenfunctions from our pre-
ferred, common coordinate system, with the magnitude
of counter-rotations required varying significantly from
one PD to the other. For all 126 PDs, our previously-
described rotation-automation strategy (see ESPER sub-
section A) correctly isolated CM1 and CM2 and counter-
rotated each CM trajectory into the plane of its 2D sub-
space. As one small adjustment, we substituted the use
of the general conic fit for constrained parabolic fit at the
beginning of our eigenfunction-rotation algorithm, which
proved essential for evaluating initial subspaces housing
inward curling parabolas due to the presence of CTF
(Fig. S14). A histogram of the magnitudes of rotations
used across all rotation operators—which varied nontriv-
ially among the PDs—is provided in Fig. S28.

With the required CM eigenfunctions in these 126 PD-
manifold embeddings correctly rotated into a common
eigenbasis and each 2D CM subspace identified, we next
proceed to partition each 2D subspace into bins repre-
senting different conformational states. This procedure
follows our previous description (see ESPER section B),
with only slight modifications required for the case of im-
ages modified with CTF. First, to combat the effects of
inwards curling (Fig. 8) that now encumber ray projec-
tions, the location of the anchor-point was moved closer
towards the central alcove of the Φfit trajectory, such
that it comes to reside halfway between the center of
the {Φi,Φj} subspace and its previous position on the y-
axis. Additionally, the emergence of a 20-PD “blind spot”
on our 126-PD great circle—where images of CM2 were
highly obfuscated while CM1 remained pronounced—
inspired the creation of an alternative branch in our parti-
tioning procedure. In the presence of CTF, we found that
while CM1 subspaces remained highly parabolic for these
20 PDs, the parabolas corresponding to obfuscated CM2

signals were much less appreciable in structure. These
instances could be easily predicted by simple evaluation
of each subspace’s coefficient of determination (R2), with
a low score indicating that the conic fits and correspond-
ing anchor-points had proven suboptimal. Using an R2

cutoff (0.6) as a criterion, we devised an alternative strat-
egy for dealing with these aberrant subspaces, where, in-
stead of a general conic fit, the subspaces were fit using
an absolute-value function (as is shown, for demonstra-
tion only, on a more well-behaved subspace in Fig. 10-A),
and anchor point re-assigned such that nearly vertical
projections were taken across the point cloud. In effect,
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of the two eigenvectors making up the subspace coordi-
nates, the influence of the leading eigenvector was made
more prominent, such that the contiguous bins were de-
limited with near-vertically aligned borders. This added
flexibility made our partitioning algorithm robust in the
presence of less-structured distributions, with results val-
idated via examination of ground-truth bins.

Finally, we note that when CTF-modifications are
present, we first individually CTF-correct and Wiener-
filter5 each image before integration within each CM bin.
A subset of the final 2D movies produced through this
framework are available to view in supplementary movie
M3. We have also provided a comparison of these final
ESPER outputs to NSLA for one degree of freedom in
the section SM-XIX. Through analysis shown in several
movies, we found that ESPER generates 2D movies of
noticeably higher quality than NLSA, and with signifi-
cantly more accuracy in occupancy assignments for cor-
responding states. We further highlight problems that
can emerge in the alternative NLSA pipeline, such as
the inability to capture certain conformational motions
captured properly by ESPER, and the possibility of de-
livering nonsensical (i.e., physically impossible) results.
In addition, we found that the overall computation time
of NLSA far exceeds the one needed by ESPER.

After generating all 2D movies (one per CM for each
PD), both the type of conformational motion present in
the 2D movie (e.g., CM1 or CM2) as well as its sense
must be determined individually for each PD. As to the
definition of the sense of each movie, it cannot be said
a priori in what direction (i.e., the sequential ordering
of states) a CM trajectory is following along any path56.
For example, for CM1, the parabolic mode could either
be charting the trajectory from states 1 to 20 or from 20
to 1. This uncertainty is due to arbitrary eigenfunction
polarity which naturally arises via eigendecomposition57.
Although a comprehensive method has been developed
to solve this problem for datasets with large numbers of
sufficiently occupied PDs using optical-flow and belief-
propagation algorithms56, considering we only had 126
PDs to decipher, we opted to instead determine the type
of CM and its sense with perfect accuracy by visual in-
spection of the 2D movies. With CM types and senses
assigned, the 2D movie of a given CM—housing indices
of all images within its frames—can next be compiled
together with all other 2D movies (and corresponding
1D occupancies) of that same CM across all PDs. If we
desired only one degree of freedom as output, our task
would next be complete after reconstructing 3D density
maps from the images accumulated in each frame of the
given 2D movie (and similarly, as it applies, for the 1D
NLSA approach).

For presentation of the intermediate 1D occupancy
results, we performed this compilation on both CM1

and CM2 independently, with corresponding occupancy
statistics accumulated for each state therein, and com-
pared with ground-truth knowledge (as shown on the left
in Fig. 11). For our comprehensive dataset, we found that

the 1D occupancy map distributions were in strong agree-
ment with ground-truth knowledge, with states on aver-
age monotonically captured along each subspace trajec-
tory and having a relatively small spread of uncertainty
for each bin. Still, noticeable disagreement emerged for
both CMs near the boundaries of these distributions,
where inward curling of the parabolic point cloud due
to CTF is most prominent. As a result, 1D occupancy
assignments are slightly skewed (overestimated) near the
boundaries in comparison to ground-truth expectations
(Fig. S13).

As an aside, in order to further investigate these trends,
we repeated this analysis for data-type II independently
along three orthogonal great circle 126 PD-trajectories.
The results of this analysis are provided in Fig. S11,
where we plot 1D occupancy maps for CM1 and CM2

along with corresponding histograms detailing the R2

values of all 126 respective CM subspaces. First we
note that occupancy statistics become aberrant near the
boundaries to different extents in all occupancy maps ob-
served, a problem seemingly unavoidable based on our
observations of corresponding embedded geometries. As
this problem exists, to some lesser extent, even with-
out CTF modification of the data, it can likely be at-
tributed to Neumann boundary conditions24,57 (i.e., van-
ishing normal derivatives). It is also clear that the over-
all geometric quality of the collection of CM subspaces
present (described here via R2) is a defining factor af-
fecting the fidelity of the corresponding occupancy as-
signments to ground truth. Artifacts from PD disparity
aside, all occupancy maps remained in excellent sequen-
tial agreement, with the significance of occupancy sur-
face fluctuations highly dependent on the quality of CM
subspaces available. With this understanding, we now
return to our final data-type analysis to conclude with
the remaining steps of the ESPER framework.

As previously pointed out, these two CM coordinates
are intrinsically linked by the independent occurrence of
image indices from the same PD image stack. This fact
is used by ESPER to generate a 2D occupancy map, and
likewise for any number of degrees of freedom present
in a dataset. Specifically, this operation was performed
by taking the intersection of image indices (overlap) cor-
responding to each pairwise combination of bins in the
CM1 and CM2 trajectories: effectively reconstructing the
hypersurface on which they jointly reside. For more in-
formation on this procedure, see section SM-XVII. The
simplicity and efficiency of this operation is based on
our method’s continued use of the raw cryo-EM images
and initial manifold embedding. In contrast, the orig-
inal ManifoldEM1,10 workflow requires a radially dense
set of 1D profiles derived via NLSA (180 in total for
n = 2, each obtained from an independent NLSA anal-
ysis) from the n-dimensional subspace formed by the
previously-selected set of n eigenvectors. Naturally, this
operation rapidly increases in computational time as n is
increased. An inverse Radon transform is next applied
to these NLSA profiles to reconstruct an n-dimensional
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FIG. 11: On the left, the final occupancy maps for the 20 states in CM1 (top) are shown alongside an equivalent
representation for the 20 states in CM2 (bottom). Each plot was obtained by integration of the corresponding 20 bins
(corrected for sense) in each of the 126 PDs. The total number of images as assigned to each state via our subspace fitting
procedure is shown by the height of the 20 bars. Within each bar, the different colors represent how many of the assignments
therein belonged to which ground-truth states (as seen in the legend), allowing an assessment of the True Positive rate. On
the right, the final 2D occupancy map for the 400 states formed by CM1 and CM2 is shown; obtained via the intersection of
image indices in all pairwise combinations of CM1 and CM2 bins (corrected for sense) in each of the 126 PDs. Refer to
Fig. S13 for a direct comparison with ground truth. Finally, to circumvent issues stemming from inclusion of CM subspaces
with poor geometric structure, we note that while all images are used for subsequent 3D reconstructions, only those
occupancy assignments for CM subspaces above an R2-threshold value (0.7) were integrated during this analysis. We
additionally note that all results shown are the product of our robust automation strategy involving no case-by-case
intervention; assuredly, these deviations could be further mitigated by enforcing key parameter choices with supervision.

occupancy map. The result of our ESPER operation is
shown on the right in Fig. 11, which encompasses occu-
pancies for all 400 (20×20) bins in a 2D state space. As
each of these 400 bins contains the indices of images shar-
ing a given bin coordinate in the {CM1, CM2} plane, 3D
density maps can next be produced for each state in the
state space.

Following this assessment, image stacks, one for each
state, were generated and paired with an alignment file
that carried the input alignment and microscopy infor-
mation for each image therein, as initially defined for
each PD along the 126-PD great circle trajectory. This
file was then used as input for the relion_reconstruct
module46 to create a 3D reconstruction for each of the
400 states. These 3D density maps were loaded in se-
quence to create 3D movies seen from different views us-
ing Chimera58. As shown in Fig. 11 and qualitatively
expressed in movie M4, these 3D density maps uphold
the spatial relationships in the ground-truth CMs with

striking accuracy. Of most importance, and presenting
a key distinction from NLSA results, is the fact that the
mobile domains in all states are as well resolved as the
immobile domains.

As a quantitative validation, we calculated the Fourier
shell correlations5 (FSC) curves between several ground-
truth 3D density maps and their corresponding ESPER
recovered 3D density maps. FSC curves are a routinely
used tool for map validation in cryo-EM and suited to
provide a global indicator of agreement between two 3D
density maps. The FSC curves confirmed a good recov-
ery of the different states up to a resolution near 3 Å,
the ground-truth value. Additionally, Q-scores59 were
used, not to estimate the resolution, but as a local quan-
titative validation of the structural fidelity of these out-
puts. Using this approach on the ground-truth atomic-
coordinate structures and their corresponding ESPER
recovered 3D density maps, we found highly favorable
agreement across all residues for each state. Results for
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an example state are available in section SM-XX.

DISCUSSION

Through our analysis, we have identified the way sets
of images originating from a varying atomic structure
are represented in the manifold embeddings obtained by
DM or PCA dimensionality-reduction techniques, and
how this information can be used to retrieve the orig-
inal, ground-truth conformational motions. Our find-
ings on synthetic noisy datasets provide a number of
new insights, and emphasize the need for a refined
workflow when analyzing the eigenvectors from embed-
dings of single-particle cryo-EM datasets of molecules
exhibiting conformational motions. Several of the op-
erations introduced in this study offer straightforward
improvements on the founding PD-manifold approach
ManifoldEM1,10,11, such as our informed subspace fitting
procedure using specific combinations of eigenfunctions,
exclusion of parabolic harmonics, and a novel direct re-
trieval of each CM using the raw cryo-EM snapshots
as arranged within the initial embedding. In the last
case, the use of the raw images improves both the accu-
racy of occupancies and final resolution of 3D structures,
while providing a vastly simplified workflow for gener-
ation of multidimensional free-energy landscapes. Fur-
ther, we found the corrections for previously unaccounted
d-dimensional rotations to be essential; the absence of
awareness of which can lead to serious systematic errors
downstream (see section SM-XIX).

All of the findings within this study are based on
heuristic information obtained from ideal, controlled
datasets, analyzed so as to maximize the fidelity of our fi-
nal outputs with ground truth, while uncovering key lim-
itations and uncertainties that could potentially emerge
within this unsupervised machine-learning framework. It
is important to be aware that results from synthetic data
will always be superior to experimentally-obtained data,
since even the most sophisticated simulations will be un-
able to capture all complexities existent in an experi-
mental system. These complexities can be considered as
introducing higher-order terms in our parameter space,
which has been designed to emulate all lower-order terms
up to a threshold deemed satisfactory. Any limitations or
uncertainties that do emerge using synthetic data should
be anticipated to arise in real-world data, and potentially
in exacerbated form.

Contextually, this heuristic analysis is focused on data
models originating from molecules undergoing collective
rigid-body motions, which we believe are sufficient for
most molecular machines, but may fall short of address-
ing instances involving more complex motions. This is
especially the case for those machines entailing the con-
certed binding and release of ligands, which naturally
require a separate state space for each possible combi-
nation of the machine with each of its binding partners.
For such a situation, a study of ligands has been per-

formed with the founding ManifoldEM approach10 using
two state spaces, which could similarly be explored in an
extension of the ESPER framework.

It is also worth noting that while the results of our
heuristic analysis are most relevant to machine-learning
methods dealing with projection data (i.e., requiring the
PD-manifold approach), several portions of our analysis
can be extended to other experimental techniques deal-
ing with alternative manifold inputs, such as the use of
atomic models in molecular dynamics and 3D density
maps in cryo-electron tomography. Specifically, in sec-
tion SM-XIV, we detail how the structure of manifolds
obtained from a conformational state space transforms
as the data type is translated stepwise from atomic mod-
els to 3D density maps to 2D projections. Broadly, we
believe that there is a potential for the application of our
methodology to a wide range of experimental datasets,
and particularly those obtained from systems exercising
multiple, continuous degrees of freedom.

With that said, we return to the flowchart presented
in Fig. 9, to discuss each step of the analysis in detail, fo-
cusing on both implementation and existing limitations.

1. Ensure that orientational and conformational sampling is
adequate

Before initiating this workflow, it is first necessary to en-
sure that adequate coverage has been obtained via cryo-
EM imaging of the heterogeneous ensemble of molecules.
We have identified two main categories of coverage: (i)
coverage of S2: overcoming the effects of missing orienta-
tions with sufficient sampling of viewing directions; and
(ii) coverage of states: imaging all available conforma-
tional states present and in sufficient abundance for the
given SNR to obtain robust statistical coverage in the cor-
responding manifold. For datasets with low image counts
in many PDs, the corresponding final 3D reconstructed
volumes will ultimately suffer a loss in resolution. This
loss is manifested when the CMs in each ΩPD are stitched
together, as not enough 2D CM information is present to
properly depict its corresponding aspect of the 3D struc-
ture. For assessing coverage of S2, we have confirmed
that within our framework the availability of data over
a great circle is sufficient for recapitulating ground-truth
conformational information (movie M4).

As for state space coverage, we found that the com-
bination of two parameters—image SNR and state-space
occupancy (e.g., τM = N for uniform distributions)—
together served as a strong indicator for the ability of
each ΩPD embedding to render coherent conformational-
variation signals. Specifically, for sets of images in SNR
regimes of approximately 0.05 to 0.1, as encountered in
low-exposure cryo-EM60,61, multiple noisy duplicates (as
defined by τ) of the fundamental state space (having M
states) were required to recapitulate ground-truth struc-
ture within the spectral geometry (Fig. S9 and Fig. S10).
To note, for experimental conditions where each state
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occurs with a given frequency as dictated by its underly-
ing free energy, this condition must be met for the least
abundant states in the dataset. This extended coverage
effectively serves to drown out the experimental noise up
to the point where only the conformational-variation sig-
nal remains. Without this additional coverage, in the
worst-case scenarios, the ordering of the ground-truth
points within the embedding will be jumbled in an un-
interpretable form, with the distribution of these points
closely resembling a Gaussian distribution (e.g., as seen
in the last column of Fig. 6).

However, even embeddings of manifolds with adequate
state space coverage can still appear globular in structure
while retaining proper arrangement of states, with this
trend decreasing as coverage is increased (as shown in the
second and third columns of Fig. 6). We found that as
the τ -value is increased, there exists a lower τ -threshold
(τc) such that the arrangement of points in the embed-
ded manifold is in highest achievable consistency with its
ground-truth state space. In other words, there is a fixed
amount of coverage that is sufficient. Unfortunately in
an experiment, since the number of ground-truth states
M for a given molecular machine is unknown, so too is
this threshold particle count (τc), which can be affected
by the sample characteristics as well as the quality of the
collected data. This threshold was additionally found
to vary depending on both the intrinsic dimensionality
and energetics of the ground-truth data – with knowl-
edge of either of these parameters not immediately clear
for a given dataset. In practice, then, the insight gained
about threshold particle count is of no help in guiding the
experimental design, and hence the decision on adequacy
of state space coverage must be made by trial and error.

One would first aim to collect as many particles as pos-
sible during the experiment, and, after generation and
embedding of manifolds, make a decision on the ade-
quacy of that collection based on the presence of ro-
bust parabola-housing subspaces. Such subspaces were
directly observed and showcased, for example, in the con-
formational embedding of the ribosome1. As one poten-
tial scheme, for each ΩPD individually, after 2D subspaces
have been fit and R2-values computed (Fig. S14), an R2-
threshold can be used across all subspaces to assess geo-
metric conditions and demarcate use of either NLSA or
ESPER on that manifold. As seen in movie M8, these two
frameworks share considerable overlap in their 2D movie
outputs, and may need only their final PD-outputs subse-
quently combined for production of sensible 3D movies.
Additionally to consider, while it has been shown that
ESPER is by far the better choice for manifolds with
geometrically-structured subspaces, only NLSA can be
applied in the regime of manifold embeddings completely
lacking discernible form, while still potentially incurring
its known limitations and uncertainties11.

As a final note for this section, experimental data suf-
fer from a wider range of nuisances than we have ac-
counted for in our simulation, including the occurrence
of aberrant particles (such as ice shards or foreign bod-

ies); uncertainty in CTF estimation; and uncertainty in
angular alignments, which are more pronounced in het-
erogeneous data. While numerous preprocessing algo-
rithms exist to handle each of these instances27,46,47, it is
obvious that such artifacts and errors, if left unaccounted
for, can have detrimental consequences for the fidelity of
the corresponding manifolds to the rules we uncovered
using the simulation.

2. Construct embedded manifold for PD

The choice of method for obtaining eigenvectors—
through either linear or nonlinear dimensionality reduc-
tion frameworks—proved to have relatively minor conse-
quences compared with many other choices in our work-
flow. As previously noted, both PCA and DM ap-
proaches aim to achieve a description of the dataset’s
most fundamental form, defined by the multidimensional
relationship among all images in a PD. Surprisingly, PCA
and DM produced almost identical eigenvectors for all
data examined in this work, particularly in the presence
of noise (as seen in Fig. S17 and Fig. S18). The high
similarity in the performance of these methods did not
conform to previous expectations, as the superiority of
nonlinear dimensionality reduction frameworks to linear
ones is a belief often cited in the field1,4,24,38,62. In con-
trast, however, a comparative review of twelve promi-
nent dimensionality frameworks13 has also shown that,
despite their ability to learn the structure of complex
manifolds, most nonlinear techniques are unable to out-
perform PCA on experimentally-obtained datasets. In
the presence of noise, our discoveries indicate that biolog-
ical objects (such as macromolecules) undergoing combi-
nations of rigid body conformational motions fall in the
latter camp and can be effectively studied using either
linear or nonlinear techniques.

Given such a choice in embedding strategies, it would
still make sense to give preference to DM, as it leaves
room for the possibility of cases yet to be encountered,
such as those where PCA may have difficulty in untan-
gling certain types of complex conformational relation-
ships. The DM framework additionally offers a reduction
in computational load of the eigendecomposition due to
its sparse matrices, which becomes increasingly relevant
as the number of snapshots increases. However, certain
caveats must still be considered. For one, discretion is in-
troduced in all nonlinear frameworks through the fitting
of additional parameters required for their optimal per-
formance, failure of which can lead to systematic errors13.
Using the right strategies, these uncertainties can be min-
imized. In the case of DM, while incorrect choice of the
Gaussian bandwidth had drastic consequences, this pa-
rameter was consistently put into the correct ballpark
using bandwidth estimation plots. It is also necessary to
point out that while DM and PCA examined in detail
here are two of the most prominent dimensionality re-
duction techniques, it might be well worth investigating
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the performance of other approaches13 using simulated
datasets such as ours.

Finally for this section, we discuss the use of the
defocus-tolerant kernel1 for calculating Euclidean dis-
tances between images on which a CTF was imposed.
We found that its success dwarfed that of two other tech-
niques explored. For comparison, we first observed that
manifold embeddings obtained using the standard kernel
without any CTF correction were completely incoherent
in structure, as expected. Better behaved but still flawed
were embeddings obtained from sets of CTF-corrected
images (Fig. S12-G) using the standard kernel, which ul-
timately provided structure suboptimal to those obtained
using the double-filtering kernel. We consider this study
the first demonstration that the previous double-filter
kernel introduced1 is more effective than CTF-correction
of individual images. However, as previously noted, this
kernel is not free of artifacts.

Most significantly, CM subspaces typically had a
strong proclivity for curling inwards near the outer
edge, with states clumped more densely in these regions
(Fig. 8). This trend was apparent enough to require the
introduction of general conic fitting strategies for eluci-
dating CM subspaces (Fig. S14). Future studies could
further examine the effects of this defocus-tolerant ker-
nel on a wide range of defocus-value intervals and relative
magnitudes. As a note, when altering the defocus range,
one must carefully choose the particle box size. If the box
size is too small to fit the broadening due to the point-
spread function (i.e., the Fourier transform of the CTF),
the presence of inward curling on each CM subspace is
greatly exacerbated. There are additional higher-order
aberrations of the CTF relevant for high-resolution cryo-
EM63 (such as astigmatism and beam tilt) which can be
easily incorporated in the CTF of the double filter. While
not explored here, these may further affect the spectral
geometry if not accounted for properly.

3. Determine pairs of eigenvectors for CM parabolas

Specific techniques must next be applied to discover the
set of conformational modes corresponding to each CM
within each ΩPD embedding, with the number of these
sets defined by the dataset’s intrinsic dimensionality.
However, as described in section SM-XI, there exists an
initial uncertainty about how to best determine the in-
trinsic dimensionality of any given dataset64,65 (i.e., the
number of CMs present to search for), for which both
an evaluation of the eigenvalue spectrum (for both PCA
and DM) and bandwidth estimation strategy (for DM)
have proven unsatisfactory for our purposes. To circum-
vent this uncertainty, we have introduced an elimination
procedure to locate subspaces where conformational in-
formation most likely resides, and based on information
gleaned from those findings, eliminate unsuitable sub-
spaces from further study.

Our analysis demonstrated that the minimum informa-

tion required during this discovery was the attainment
of the lowest-order Chebyshev polynomial (T2) for each
degree of freedom, with all other features in the embed-
ding irrelevant to our needs. For any number of CMs de-
fined by the dataset’s intrinsic dimensionality, the point-
cloud resemblance to these Chebyshev polynomials can
be found spanning specific 2D subspaces. However, care
must still be taken to prevent overfitting, since blindly
performing the subsequent steps in this framework on
subspaces that do not unequivocally represent one of the
dataset’s CMs (note that there are principally many such
subspaces, such as those housing harmonics) can pro-
duce nonsensical conformational movies. For instance,
we have provided several 2D NLSA movie outputs cor-
responding to independent degrees of freedom in movie
M8 showcasing physically impossible motions (further de-
scriptions are provided in section SM-XIX). Likewise, we
have demonstrated how sets of parabolic harmonics for
each CM naturally exist in all ΩPD embeddings and, due
to the overlapping nature of their point clouds, are unvi-
able for mapping conformational information.

In contrast, the ESPER algorithm automatically fits
each 2D subspace with parabolas, and signals the best-
fit subspace for each eigenvector row for use in subse-
quent steps. Further, the eigenvector indices of these
best-fit subspaces can be used to procedurally eliminate
the use of CM harmonics, as is described in section SM-
XVI. The availability and use of this information acts to
circumvent the potential for contextual confusion in out-
puts, and is a direct remedy to one of the most prominent
uncertainties11 in the founding ManifoldEM framework
(see section SM-XIX). However, in practice, the ability
to strategically avoid harmonics is only applicable up to
the number of CMs present having pronounced geomet-
ric structure viable for reliable parabolic fits. It is likely
that more advanced strategies could be applied to opti-
mize our routine to additionally eliminate a larger subset
of higher-order harmonics. Finally, it is important to
carefully examine the 2D movies produced for each po-
tential CM by eye. The emergence of nonsensical (i.e.,
physically impossible) patterns should be seen as a strong
indicator for overfitting of the ΩPD embedding. In a simi-
lar vein, the possibility of underfitting (analyzing too few
CM subspaces) must also be taken into account, though
it carries significantly less risks.

4. Find optimal rotations for the eigenfunctions

As we have seen to some extent in every embedding
explored, depending on the choice of PD, the confor-
mational modes previously discovered can appear mis-
aligned with the plane of their 2D subspace. As shown in
section SM-XIV, this effect arises from the introduction
of altered, foreshortened distances in each 2D projection
(i.e., PD disparity), and could be countered via rota-
tion of specific eigenvectors to ease retrieval of the CM.
Given this knowledge, we have presented an automated
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procedure for the discovery of these optimal rotation an-
gles for each PD. Despite its remarkable performance on
our four 126-PD datasets (Fig. 11 and Fig. S11), we
believe there is still room for this technique to be fur-
ther developed in future works so as to account for rare
events such as complex boundary conditions (e.g., due
to steric hindrance between domains, as discussed in sec-
tion SM-XV) as well as datasets with n > 2 degrees of
freedom (see section SM-XVI). In the prior case, the use
of additional rotation operators may be required, creat-
ing a more complex collection of decisions, possibly well-
suited for a maximum-likelihood approach. Furthermore,
for noisier, less-structured embeddings, we have observed
that the 2D histogram method may provide close but not
perfectly-aligned counter-rotations. It is possible that
this method can be further elaborated by using addi-
tional eigenfunctions, which would allow the fitting with
parabolic sheets instead of—or perhaps alongside with—
histogram distributions.

These findings have directly established a new set of
requirements in the types of datasets most viable for
PD-manifold studies of conformational continuum. If no
geometric form can be deciphered in all or even a sig-
nificant number of ΩPD embeddings, we claim it is ef-
fectively impossible to find the proper counter-rotation
such that all PD eigenbases are displayed in a common
coordinate system defined by CMs. We have further ob-
served that the inability to align eigenfunctions onto this
common eigenbasis can to varying extents subvert the
quality of 2D movies and occupancy maps (see PD33 in
movie M8), and thus ultimately the quality of the fi-
nal 3D reconstructions. This fact explains several of the
limitations11 recently documented in the founding PD-
manifold approach1,10, since the previous ManifoldEM
approach does not account for the tendency of ΩPD em-
beddings to be unpredictably unaligned from a common
coordinate system (e.g., Fig. S28). For a more detailed
analysis of limitations and uncertainties observed, see
section SM-XIX. Thus, in order to maximize fidelity of fi-
nal outputs with ground truth, a dataset must first fulfill
a minimum set of requirements that ultimately provide a
well-structured spectral geometry when embedded. The
performance of ESPER hinges on the presence of this
geometric information, and as we have shown and will
continue to discuss in the sections that follow, a great
number of benefits emerge when it is available.

5. Fit and partition each CM point cloud

Once the set of conformational modes are identified and
counter-rotated for each ΩPD embedding, a further ob-
stacle is encountered in the heightened variability of these
point clouds (Fig. 7) – which vary in average thickness,
density, length and type of trajectory, as well as spread of
data points – depending on CM and PD. These complica-
tions were addressed through use of a robust automation
strategy, including least-squares fitting and area-based

partitioning of the essential subspaces. Overall, the area-
based procedures employed—including the ball tree and
alpha shape frameworks—are strongly affected by large
changes in parameters and thus may require initial super-
vision on externally-obtained datasets. For the purpose
of this study, we investigated over 500 subspaces, with
each of our parameters broadly tuned for robust, high-
quality performance on the SS2 CM1 and CM2 subspaces
from data-type II and III. Detailed notes on these proce-
dures have been provided in our published repository37,
which includes comments describing less-significant deci-
sions not explicitly noted in our main text. As a final
note, we analyzed the outputs of these procedures on
both the parabolic {Ψi,Ψj} and transformed {Φi,Φj}
CM subspaces, and found consistently better agreement
with ground-truth occupancies in the latter kind.

6. Bin points along straightened trajectory and integrate
images

After achieving these prior conditions, points (one cor-
responding to each image) projected onto their respec-
tive least-squares fit must be binned, with bins created
via the aforementioned area-based approach. Each of
these bins represents one of the system’s unique states
along the CM corresponding to the current 2D subspace.
While we used a bin size as informed by our ground-truth
knowledge to enable a direct comparison between inputs
and outputs, it is another issue entirely to decide on the
proper bin size for real-world data. As detailed in sec-
tion SM-XVII, note that the bin size effectively controls
the precision to which we can locate each point in the
higher-dimensional surface, and it influences the range of
images falling within each state that we group together
as virtually identical for means of our final outputs. Nat-
urally, the use of this optimal value should maximize the
amount of information ascertainable in our system. In
theory, we desire a minimum number of snapshots in the
lowest-occupancy bin, such that every frame of the sub-
sequent movie has significant content; e.g., as possibly
defined via both the average SNR of each image and the
number of images in the lowest-occupancy bin.

For each CM in a given dataset (regardless of intrinsic
dimensionality: 1, 2, and 3 were tried), we were able to
project the set of our images onto curves determined by
least-squares fits, organize them into bins, and produce
near-perfect 2D movies displaying each conformational
motion independently of all others (movies M2 and M3).
The corresponding occupancy maps showed a favorable
agreement with our ground-truth knowledge (Fig. 10-G,
Fig. 11, Fig. S11), and were significantly more accurate
than those produced by NLSA for all datasets explored
(movie M8). Overall, the procurement of accurate oc-
cupancy maps for each PD was by far the most trying
endeavor, requiring a robust workflow able to account
for large variations in a wide range of manifold charac-
teristics. While it is very easy to split the CM subspace
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crudely into only two or a handful of states, as the num-
ber of states requested is increased, the degree of sophisti-
cation in mapping and segmenting each point cloud must
also increase in turn. As previously noted, when dealing
with experimental data, these occupancies contain vital
information for the energetics of the ensemble, and are
directly linked to the free-energy landscape spanned by
the conformational degrees of freedom. We will return
to this topic in the next section when discussing the final
occupancy maps generated via integration of CM content
across all PDs on S2.

7. Identify motion type and sense for each CM 2D movie

With the acquisition of each isolated conformational mo-
tion for each PD, lastly in such a framework, these CMs
must be stitched together1,56 using equivalent CM infor-
mation from each PD across S2. For our workflow, this
procedure required manually solving two subproblems:
(i) identifying each set of CMs across S2 (e.g., such that
CM1 in a given PD is matched with CM1 in all other
PDs, etc.) and (ii) identifying the sense of each CM
in each PD. We draw attention again to the external,
comprehensive method developed to solve this problem
with heightened accuracy, which uses optical flow and be-
lief propagation algorithms56, and strongly advise against
making such assignments arduously by hand.

8. Compile CMs on S2 for free-energy landscape and 3D
movies

After CMs have been properly identified and matched
among all PDs, the indices of points (designating images)
and related statistics can be organized to produce an n-
dimensional occupancy map, with the images assigned
to each n-dimensional bin therein accumulated to form
a corresponding 3D density map. Once these previous
steps were performed for our dataset, we compared the
state assignments of all images from S2 to their ground-
truth indices. We found that the majority of images in
each bin (state) were correctly assigned, with each bin
also encompassing a small set of images that were actu-
ally ground-truth members of neighboring bins (Fig. 11
and Fig. S11).

Our final 2D occupancy map (also seen in Fig. 11),
formed by the intersection of snapshots in both 1D oc-
cupancy distributions, showed similar consonance with
ground-truth expectations (Fig. S13). As a result of
these accurate occupancy assignments, we ultimately ob-
served a remarkable fidelity between each of the 400 re-
constructed 3D density maps obtained by ESPER (movie
M4) and their respective ground-truth 3D density maps.
In addition, the resolution of all volumes were close to
3 Å, matching the resolution of the ground-truth struc-
tures. Overall, the small spread of states into neighboring
bins appeared to have only a marginal effect on the qual-

ity of final 3D density maps. Through our analysis, it
is apparent that the majority of aberrant information in
each bin (corresponding to neighboring states) was effec-
tively averaged out, such that only the conformational-
variation signals corresponding to the current state domi-
nated in each subsequently-generated 3D reconstruction.
These findings were further supported quantitatively by
an assessment of the structural fidelity of ESPER out-
puts with ground-truth atomic-coordinate structures and
3D electron density maps using Q-score calculations on
residues and FSC curves, respectively (see section SM-
XX).

As a final note, since our method retains the origi-
nal image content for each image index assigned to a
given bin, it is possible to further improve these image
assignments after they have been generated by our sub-
space fitting routines. Our ability to leverage the final
image content to further improve 3D density maps and
corresponding occupancy distributions stands in contrast
to the founding PD-manifold approach1, which relies on
histogram equalization (technically histogram matching)
to match the occupancy distributions across PDs. Al-
though not pursued here, one possible way is a maximum-
likelihood approach aimed at comparing images within
each bin and reassigning erroneously-assigned subpopu-
lations into the neighboring bin in which they most likely
belong. To note, a maximum-likelihood approach does al-
ready exist that aims to extract such granular conforma-
tional heterogeneity66, as does a method based on neural
networks67.

CONCLUSIONS

An ensemble of synthetic cryo-EM projections of the
Hsp90 protein undergoing quasi-continuous conforma-
tional changes has been generated as an exemplary
ground-truth model to determine how macromolecular
motions appear in low-dimensional representations of
their respective dataset using the PD-manifold approach.
Based on knowledge obtained by this analysis, we have
introduced a novel, unsupervised workflow with several
enhancements that substantially improve the Manifol-
dEM framework and its ability to recover continuous con-
formations from single-particle cryo-EM data. These in-
clude essential eigenvector rotations to consistently align
the spectral geometry of all ΩPD embeddings, use of the
original cryo-EM images to form high-quality 2D and 3D
movies, and efficient strategies for building multidimen-
sional free-energy landscapes. Along with the introduc-
tion of this workflow, we have also pointed out challenges,
fundamental limitations and uncertainties that emerge
in geometric machine learning of heterogeneous cryo-EM
data. Finally, we hope that the insights gained from
these machine-learning heuristics will be useful not only
in cryo-EM, but also in the development of other tech-
niques aimed at untangling complex systems exercising
multiple, continuous degrees of freedom.
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Appendix: Description of symbols and abbreviations

Name Description

CM Conformational motion

n Intrinsic dimensionality of the state space (SSn):
one degree of freedom per CM

Ω Compact Riemannian n-dimensional manifold

N Number of images in each PD manifold (ΩPD)

P Number of pixels per image

S2 2-sphere: set of angles for 3D viewing orientations

PD Projection direction ⊂ S2; for any PD, typically N � P

ψk Eigenfunction of Laplace-Beltrami operator

Ψi Eigenvector of N -dimensional manifold; i ∈ {1, 2, . . . , N}

λi Eigenvalue of N -dimensional manifold; i ∈ {1, 2, . . . , N}

Φi Inverse cosine of Ψi

L Lissajous curves; Lp,q ⊂ L

Tk Chebyshev polynomial of the first kind;
e.g., T2(x) = 2x2 − 1 for the parabola

d Dimension of orthogonal matrix O (and Rij) applied on
embedded space in Rd

Rij Rotation sub-matrix operating on {Ψi,Ψj},
of which there are d(d− 1)/2 ∈ O

ε Gaussian bandwidth used in DM Gaussian kernel

M Number of unique ground-truth states

τ Number of times a given state space is uniformly
duplicated, such that τM = N

R2 Coefficient of determination

m Number of atoms in an atomic-coordinate structure
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