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Abstract—This work is based on the manifold-embedding ap-
proach to study biological molecules exhibiting continuous con-
formational changes. Previous work established a method—now
termed ManifoldEM—capable of reconstructing 3D movies and
accompanying free-energy landscapes from single-particle cryo-
EM images of macromolecules exercising multiple conformational
degrees of freedom. While ManifoldEM has proven its viability
in several experimental studies, critical limitations and uncertain-
ties have been found throughout its extended development and
use. Guided by insights from studies with cryo-EM ground-truth
data, simulated from atomic structures undergoing conformational
changes, we have built a novel framework, ESPER, able to retrieve
the free-energy landscape and respective 3D Coulomb potential
maps for all states simulated. As shown by a direct comparison
of ground truth vs. recovered maps, and analysis of experimental
data from the 80S ribosome and ryanodine receptor, ESPER offers
substantial improvements relative to the previous work.

Index Terms—Biomolecules, free-energy landscape, kernel
methods, manifold embedding, quantitative biology, single particle
cryogenic microscopy (cryo-EM), spectral geometry, unsupervised
machine learning.
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I. INTRODUCTION

MOLECULAR machines—consisting of assemblies of
proteins or nucleoproteins—take on a range of unique

configurations or conformational states as they go through their
functional cycles [1]. These states are typically characterized by
different spatial constellations of relatively rigid domains, and
can be organized in a state space according to the continuous
motions of each domain along a unique coordinate. Specific
sequences of the states in this space form pathways along which
the molecular machine may transform. When the number of
occurrences of each state is known, the machine’s free-energy
landscape can be determined, and a path is singled out along
which the machine performs its metabolic function [2].

A number of recent studies [1], [3], [4] were inspired by the
realization that it is possible, through the analysis of experimen-
tal data, to gain insights into the rules governing a molecular
machine’s function. In thermal equilibrium, these machines are
constantly buffeted by the random motions of nearby solvent
molecules which deform them reversibly as they transition via a
series of thermally-driven steps. State-of-the-art single-particle
cryo-EM [5]–[7] is now capable of providing large numbers
of two-dimensional snapshots (i.e., projections) of a molecular
machine undergoing this process. When the number of snapshots
is sufficiently large—typically several hundred thousand—they
capture virtually the entire range of conformations accessible
in thermodynamic equilibrium. By virtue of the Boltzmann
statistics, the relative number of sightings in each of these states
can be translated into changes of free energy [8], [9]. Thus, under
assumption of thermodynamic equilibrium, the machine’s free-
energy landscape can be gauged from an experiment. Accurate
estimation of this landscape for macromolecular assemblies is
of unparalleled importance in modern structural biology.

The way to make use of the data from a single-particle cryo-
EM experiment is not easy, however. Ideally, we would wish
to compare 3D structures, but only 2D images are accessible
experimentally. Each of these 2D images is a P pixel projection
of the macromolecule, which is assigned an angular viewing
direction on the unit sphere S2. The challenge then is that
the relationship among the N images requires an analysis of
a manifold Ω embedded in a high-dimensional Euclidean space
RP , which is organized according to both conformational and
orientational degrees of freedom. As manifolds are encountered
in many domains of mathematics, science and engineering [10],
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dimensionality reduction has been widely pursued and given
rise to a number of well-established techniques to analyze large
and complex data sets. Representing data points on Ω in terms
of leading eigenvalues and eigenvectors gives valuable insights
into the manifold’s intrinsic structure, as these relationships have
been well studied in the context of spectral geometry [11]. By
means of dimensionality reduction, a suitable embedding can be
chosen that maps the data points in Ω into a low-dimensional
Euclidean space, thus creating the basis for the analysis of the
molecule’s conformational spectrum and free-energy landscape.

In the analysis of cryo-EM data, both linear [3], [12]–[18] and
nonlinear [1], [19], [20] dimensionality-reduction methods have
been applied, primarily principal component analysis (PCA)
[21] and diffusion maps (DM) [22], [23]. Both approaches
allow an analysis of the data points in Ω as embedded in RN ,
whose entries are the first N eigenvectors of the respective
graph. Only a leading subset of these are needed for retrieving
the conformational spectrum in good approximation. In the
PCA approach, eigenvectors are obtained from the covariance
matrix, whereas DM approximates the eigenfunctions of the
Laplace-Beltrami operator (LBO) on Ω, sampled at the given
data points. Another method, called Laplacian spectral volumes
[4], relies on both linear and nonlinear dimensionality reduction.
These methods can further be classified based on their type of
data input: generating embeddings from either 2D projections
straight from a cryo-EM experiment [1], [24], or from 3D density
maps reconstructed from those projections [4], [25]–[28]. It is
expected that these competing manifold embedding methods
should deliver equivalent information when cross-validated, and
likewise for alternative techniques, which extend now into work
using deep learning [29]–[32].

Here we follow the former strategy, making use of raw
2D projections from single-particle cryo-EM. Images are first
grouped by projection direction (PD) on S2 and aligned. In the
following we use the term PD for a group of projections with
orientations centered on a grid point on S2 and falling within a
given angular aperture width. This width is determined by the
stipulation that changes of the image within the aperture due
to orientation are small compared to conformational changes.
Similarities between images within a PD appear as closeness
between corresponding points in the N-dimensional space. The
geometric structure formed by such an ensemble is a manifold
with an intrinsic dimension n equal to the number of the system’s
independent molecular degrees of freedom. In that manifold, for
a given PD, images of molecules captured in random states are
arranged—by virtue of their similarities—in the sequence of
their continuous conformational motions.

In the following, we use the term PD-manifold approach to
refer to this strategy, which entails an analysis of the n-manifold
embedding of each PD, and the combination of resulting repre-
sentations from all PDs across S2 to form a consolidated con-
formational spectrum. Specifically, for each PD independently,
an embedding is first formed using nonlinear dimensionality
reduction (via diffusion mapping), followed by several appli-
cations of nonlinear Laplacian spectral analysis (NLSA) [33]
along different coordinates of the embedded space to reconstruct
a series of images associated with each degree of freedom in

the data set (as seen from that PD). This conformational infor-
mation is then compiled across all PDs to form an occupancy
map and corresponding free-energy landscape, in conjunction
with 3D conformational movies. This approach was first intro-
duced by Dashti et al. (2014) and is now termed ManifoldEM
[24]. Results from previous ManifoldEM studies on biological
systems—including the ribosome [1], ryanodine receptor [24],
and SARS-CoV-2 spike protein [34]—have proven its viability
and its potential to provide new information on the biological
function of the molecules.

Since its introduction [24], ManifoldEM has been released to
the public through both Matlab [35] and Python [36] distribu-
tions, with the latter providing a comprehensive graphics user
interface, training manual, and enhanced automation schemes
[37]. Throughout these developments [36], the performance
of ManifoldEM software and methodology were analyzed ex-
tensively by both internal and external testing using several
experimental data sets [38]. Some problems and indications
of anomalies emerged during these studies [38], but without
a comparison to ground truth, their origin could not be traced.

It was the absence of information on what outcome might be
expected for a molecular structure undergoing conformational
variations that motivated us to analyze the performance of Man-
ifoldEM rigorously with synthetic data [39], [40]. In the course
of this detailed heuristic analysis [41] we discovered distinct
features of the manifold that enable us to improve the method of
analysis and reduce the observed problems. The present account
is a condensed version of [41] focusing on seminal results
of general interest. Additionally, alternative synthetic data are
introduced and analyzed, pseudocode is added detailing three
important steps for clarity, and an additional study is conducted
on experimental data; altogether, these additions further grant
an updated discussion.

We thus introduce a novel methodology (which we will term
ESPER: Embedded subspace partitioning and eigenfunction re-
alignment) which is able to properly navigate the n-dimensional
PD-manifold embeddings observed and accurately generate the
molecular machine’s free-energy landscape as well as 3D movies
depicting its function. Whereas the previous approach [1], [24]
aims to reconstruct images via NLSA in an additionally em-
bedded space spanned by one or more conformational motions
(CMs), ESPER instead captures each CM directly from the
initial embedding while retaining the original cryo-EM raw
images. In addition, several novel operations and refinements
to the existing PD-manifold approach are introduced, includ-
ing a previously unaccounted-for high-dimensional eigenbasis
transformation that proved essential for correctly recapitulating
ground-truth information, as well as identification of the proper
2D subspaces required to adequately capture each CM. We
demonstrate that this alternative methodology provides results
of significantly improved quality.

II. SIMULATION OF CRYO-EM ENSEMBLES

We first introduce our framework for the creation of synthetic
ground-truth single-particle cryo-EM data sets in the form of 2D
projections of 3D density maps arising from a quasi-continuum
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of atomic structures [39], [40]. In the time since its conception,
this synthetic framework has already been used as a performance
benchmark by two other groups [29], [42]. To begin, a suitable
macromolecule is chosen as a foundational model, defined by
structural information available in the form of 3D atomic coordi-
nates from the Protein Data Bank (PDB) [43]. Using this initial
PDB structure as a seed, a sequence of states is generated by
altering the positions of specific domains of the macromolecule’s
structure. To mimic quasi-continuous CMs, we used equispaced
rotations of the domains about their hinge-residue axes. The
number of these mutually independent CMs defines the intrinsic
dimensionality n of the system. By exercising these domain
motions independently in all combinations, a set of atomic
coordinate structures in PDB-format are generated. In sum, this
quasi-continuum of states spans the molecular machine’s state
space (SSn).

For this work, the heat shock protein Hsp90 was chosen
due to its illustrative design, exhibiting two arm-like domains
connected together in an overarching V-shape which naturally
undergo large conformational changes [44]. We initiated our
workflow with the fully closed state via entry PDB 2CG9, whose
structure was determined at 3.1 Å by X-ray crystallography
[45]. Instead of a single conformational motion (arms open to
closed, as in vivo), we decided to create three easily-identifiable
and fully-decoupled domain motions, which we refer to as
CM1, CM2 and CM3. Using combinations of these CMs, three
synthetic state spaces (SSn) were generated, with intrinsic di-
mensionalities of n = 1, 2, 3. In-depth details for these data
sets, such as exact atomic descriptions of each state, are provided
in Supplementary Material Section A.

Image artifacts and ensemble statistics are also incorporated
into these state-space models in four steps, termed data-type
I, II, III and IV, with each step designed to move closer to
emulating characteristics anticipated in a cryo-EM experiment.
Data-type I is given no simulated experimental artifacts or
occupancy assignments, which allows us to analytically quan-
tify the trajectories of our simulated conformational changes
under ideal settings (Movie 1). In data-type II, we vary the
abundance of images (τ ) per state in each data set and add noise
to the images with varying signal-to-noise ratio (SNR), so as
to quantify the robustness of this geometry in the presence of
noise and statistical coverage. In data-type III, we further apply
a contrast transfer function (CTF) with realistic microscopy
parameters and random defocus variations (within the typical
range expected in the experiment), and add noise to obtain an
experimentally-relevant SNR. Finally, data-type IV incorporates
a non-uniform occupancy map, thereby simulating an energy
distribution for states in data-type III. Detailed information
pertaining to the construction of each of these three data types
is provided in the Supplementary Material Section C.

III. ANALYSIS OF EMBEDDINGS

In the following, the most significant findings of our
heuristic analysis of the embeddings of numerous PD manifolds
[41]—performed over three state spaces (SS1, SS2 and
SS3) and four data-types, using both linear and nonlinear

dimensionality-reduction methods—are presented. In sum,
these discoveries provide a solid rationale for the strategies
devised in the ESPER method described below.

As a note on the choice of dimensionality-reduction method,
overall, the results of our analysis using PCA and DM were
virtually identical, unless otherwise stated. Here we describe
the embeddings achieved via DM, as is standard in the founding
ManifoldEM methodology. A summary of both the DM and
PCA approach is provided in Supplementary Material Section D,
where we define parameters such as the Gaussian bandwidth (ε)
used in the Gaussian kernel (12), and introduce the previously-
established double-filtering kernel [1].

Analysis of Data-type I. We first generated a different em-
bedding for each of several PD manifolds in SS1, with each
of the resultant point clouds containing a collection of points
corresponding to images depicting conformational states from
CM1. A distinct pattern emerged (Fig. 1(b)) when examining
the embedding in terms of its set of 2D eigenvector subspaces
{Ψi ×Ψj} where i < j, which revealed conformational signal
following the Lissajous curves [46]

Lp,q={cos(pπx)×cos(qπx) |x ∈ [0, 1]; p < q ∈ Z+}. (1)

In (1), x is the conformational coordinate represented by a
number in the interval [0, 1]. The appearance of these Lp,q

curves—which are the Cartesian products (symbolized by ×)
of two sinusoids—aligns with the known attributes of the LBO
approximated by DM. Specifically, the functions

ψk = { cos (kπx} | x ∈ [0, 1] ; k ∈ Z+} (2)

are the canonical eigenfunctions of the LBO on the interval [0, 1]
subject to Neumann boundary conditions [47]. We were able to
directly observe these individual cosines in each PD embedding
by ordering the indices of points in each eigenvector along the
ground-truth CM1 sequence of states (Fig. 1(a)). When this
procedure was repeated for SS2 and SS3—independently for
each CM present—we observed that for n degrees of freedom
in a given data set, there are n independent sets of sinusoids ψk.
Each of these sets {ψγ

k | γ ∈ Z+ ≤ n}, denoted by an index γ
per degree of freedom, are interspersed throughout the leading
eigenvectors.

While we can view each ψγ
k individually, given privileged

knowledge of the ground-truth sequence of states [41], this does
not apply for experimental data, since points arrive in a random
sequence and will also include missing or duplicate states.
However, since the points in each ψγ

k are always scrambled
in the same way in all eigenvectors, we can instead rely on
the composite of any two eigenvectors to always manifest a
readily identifiable form. For these composites, we found that
CM information is portrayed most simply (without overlap)
along a specific subset of the Lp,q curves, and that for each CM,
only a single 2D subspace was required to recapitulate ground
truth. The eigenvectors{Ψi ×Ψj}of this essential subspace are
defined by the Cartesian product of the first two eigenfunctions
{ψ1 × ψ2} of the respective CM, forming a parabola (Fig. 2).
In this projected view, states differing in coordinates that are
orthogonal to the projection plane—and thus describe ulterior
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Fig. 1. Analysis of eigenfunctions for PD1 in SS1 from data-type I. On the left (a) are the sinusoidal formsψk that emerge when points (corresponding to images)
in each eigenvector are ordered precisely in the sequence in which the ground-truth CMs were constructed. Regardless of any knowledge of such a sequence,
the composites of these eigenvectors will always form well-defined geometries (via the Lissajous curves), as shown in (b). In the first row are the Chebyshev
polynomials of the first kind, of which the parabola {Ψ1 ×Ψ2} is the simplest mapping of the conformational information present.

Fig. 2. The spectral geometry within a subset of 2D subspaces for PD1 in SS2

is shown, as generated via DM. As seen for n > 1, (1) is significantly more
complex, with hypersurfaces intermixed. The color map is defined to match
the indices of points spanning CM1, such that CM2 points are approximately
uniform in color map value (multiples of 20, overlaid).

CM information embedded on a higher-dimension surface—
overlap. We note that this finding stands in contrast to the
previous ManifoldEM methodology, which starts with a single
eigenvector Ψi from the initial embedding for mapping a given
CM [1]. Later in our analysis, we will demonstrate the difference
and its consequences.

As can be seen in Fig. 2, the parabola-housing 2D sub-
spaces corresponding to CM1 and CM2 are {Ψ1 ×Ψ3} and
{Ψ2 ×Ψ5}, corresponding to {ψ1

1 × ψ1
2} and {ψ2

1 × ψ2
2}, re-

spectively. These parabolas are a minority intermixed among
a majority of 2D subspaces displaying the image sequence
in a variety of more complicated spatial patterns. For ex-
ample, {Ψ1 ×Ψ2} displays both CM1 and CM2 content on
a top-down projection of a parabolic surface—corresponding
to {ψ1

1 × ψ2
1}—whereas {Ψ3 ×Ψ4} charts CM1 information

along an alpha-shaped trajectory {ψ1
2 × ψ1

3}. Great care must
be taken to identify the highly-informative CM parabolas
present, while avoiding subspaces where CM information is
obfuscated.

The ability to do so is worsened by the additional presence
of 2D subspaces displaying higher-order Lp,q parabolas (such
as {Ψ3 ×Ψ6} corresponding to {ψ1

2 × ψ1
4}) which deceptively

repeat a conformational motion one or more times (i.e., multival-
ued) within one span of the parabolic trajectory. We denote these
higher-order parabolas as harmonics, which do not preserve
topological structure (i.e., non-injective surjections [48]) and
must be avoided when mapping a CM. This is a problem that
becomes more challenging for data sets with multiple degrees
of freedom, which was not addressed in an automated way in
the founding ManifoldEM methodology.

We next describe the major differences observed between the
distributions of point clouds corresponding to different PDs.
Naturally, as each 2D projection of the molecular machine
provides an incomplete representation of the underlying 3D
density map, depending on the type of motion as viewed in
the PD under investigation, ground truth is preserved to dif-
ferent degrees. The effect of this PD disparity was present in
all embeddings we analyzed, and especially those from data
sets simulated with more than one degree of freedom. The
most dominant characteristic was an apparent rotation of the
point clouds in each subspace, as seen subtly in the 2D sub-
spaces shown in Fig. 2 (e.g., {Ψ2 ×Ψ5}). In other PDs, the
effect can be more drastic, with each projected CM parabola
appearing more like the projection of a rotated parabolic
surface.

Through an analysis of how the canonical eigenfunctions on a
rectangular domain transform as the data type is translated step-
wise from atomic models to 3D density maps to 2D projections
[41], we found that the cause of these rotations was tied to the
projection of 3D macromolecular content in a given PD. In close
approximation, a given eigenvector Ψi is a linear combination
of n canonical eigenfunctions {cos(kπxγ) | k ∈ Z+}, each
corresponding to a degree of freedom xγ ⊂ Rn. As an example
from our analysis using SS2, we show that the leading ΩPD
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Fig. 3. Set of {PC1,PC2} subspaces produced by PCA from PD1 images in
SS1 over a range of SNR values and levels of state space coverage.

eigenfunctions appear in the form

Ψi=cos(θ)cos(vπx) + sin(θ)cos(wπy)=Aψv +Bψw (3)

Using this explicit expression, we are able to near-perfectly
approximate the heuristically-derived embeddings [41]. Further,
the sum of the squared coefficients is conserved across pairs of
eigenvectors, such that the base functions Ψ′

i = ψv and Ψ′
j =

ψw can be expressed as a rotation Ψ = RT Ψ′, with form[
Ψi (θ)
Ψj (θ)

]
=

[
cos (θ)ψv + sin (θ)ψw

−sin (θ)ψv + cos (θ)ψw

]
(4)

From our analytical expression, it is clear that, depending on
the PD, CM information—pertaining to each of the system’s
degrees of freedom—will lie on some linear combination of the
embedded manifold’s orthogonal eigenvectors. We denote this
feature as a result of eigenfunction misalignments, which are
neither described nor accounted for in the original ManifoldEM
framework, and explain some of its previously-documented
problems [35], [36], [38].

Analysis of Data-type II. As finite SNR is an important at-
tribute of any experimental data set, we next sought to understand
how the structure of the PD embeddings change with varying
SNR (Fig. 15) and state space coverage. For both PCA and DM as
dimensionality-reduction technique, the fidelity of the resulting
spectral geometry to the state space ordering decayed with
increasing noise level. Overall, the behavior of the embeddings
from each PCA and DM became increasingly similar as the SNR
was decreased (Fig. 3).

At the same time, we investigated the effects of varying state
space coverage across several SNR regimes, and its effects
on the robustness of the corresponding embeddings. For this
study, we used the 20 images in PD1 representing SS1 (i.e.,
one full range of conformational motion), and varied both the
number of times (τ ) these M = 20 ground-truth states were
duplicated as a group—with each instance having a different
realization of additive Gaussian noise—and the SNR of each
image therein. Here, Gaussian noise of constant variance was
applied for each SNR regime and uniquely added to each of the
τM = N images independently. An excerpt from the results

Fig. 4. Comparison of CM subspaces for three PDs generated from data-type
II. Here, SNR of 0.1 and τ = 10 is used, with embeddings achieved via PCA
(similar trends were also found for DM). The coordinates within each point cloud
are colored to indicate their ground-truth CM state assignment, such that each
point belongs to one of the 20 CM bins, and each bin contains 200 points (with
the same coloring scheme used regardless of CM). CM1 and CM2 subspaces
for three randomly-oriented PDs are shown in (a) and (b), respectively, so as
to emphasize the variability in features prevalent in embeddings obtained from
noisy images.

of our analysis is shown in Fig. 3, where a highly structured
pattern emerged. Specifically, when noise at increasing levels
was added to each image (decreasing SNR), increasingly larger
values of state occupancy were required to reestablish a coherent
structure in the spectral geometry. We found that as the value of
τ is increased, there exists a lower threshold (τc) such that the
arrangement of points in the embedding is in highest achievable
consistency with its ground-truth state space. In other words,
there is a fixed amount of coverage that is sufficient.

This trend is demonstrated in Fig. 4 for three PDs where CM1

is highly pronounced (with arm motion along the projection
plane), while CM2 is visually obscured to different extents. Due
to these relations, the point clouds corresponding to CM2 appear
far less structured than their CM1 counterparts. In general,
due to PD disparity, we found that the characteristics of each
CM-parabola can be seen to vary significantly depending on
viewing direction. The variations include average width, length,
density, trajectory, and spread of data points in each parabolic
point cloud, with aberrations occurring most frequently in CM
subspaces generated from PDs where the apparent range of the
given CM is diminished. As a result, while the CM subspaces for
all PD manifolds carry reliable content for recovery of 3D den-
sity maps along a conformational trajectory, certain clusters of
PDs ⊂ S2 offer less reliable geometric structure for accurately
estimating occupancies of CM states therein.

Analysis of Data-type III. We finally analyzed the PD
manifolds obtained from image ensembles generated with
experimentally-relevant CTFs and SNR, as detailed in Sup-
plementary Section C. Specifically, we tested the performance
of the CTF double-filtering kernel [1], and found a notice-
able inward-curling at the ends of the resulting CM subspace
parabolas. Notwithstanding this artifact, the double-filtering
kernel was successful in preserving the most important aspects
of the manifold, and proved superior to alternative techniques
explored, such as embedding using the standard kernel from sets
of CTF-corrected images.
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Fig. 5. Comparison of PCA and DM embeddings of the 400 images of the
“mouth-wing” toy model in SS2 from a given PD. The anticipated 20 × 20
parabolic surface is obtained by both techniques. Of note, the points in the
PCA embedding have a slightly-less uniform distribution than those in the DM
embedding, suggesting that DM better approximates intrinsic relationships in
the data. Overall, these results closely match those obtained from application of
PCA and DM on the Hsp90 SS2 synthetic continuum.

Additional Considerations. In the following section, several
considerations are provided pertaining to the relevancy and
breadth of this heuristic analysis. Our preceding analysis is
focused on data models originating from molecules undergoing
collective rigid-body motions, which we believe are sufficient
for most molecular machines, but may fall short of addressing
instances involving more complex situations. This is especially
the case for those machines entailing the concerted binding and
release of ligands, which naturally require a separate state space
for each possible combination of the machine with its binding
partners. For such a situation, a similar heuristic analysis could
be conducted using synthetic models occupying two or more
state spaces.

For completeness, we further tested the ability of PCA and
DM to correctly embed PD manifolds formed from models
exercising more complex motions. For this purpose, an ensemble
of projections of the mouth-wings toy model (Fig. 14) was
generated as described in Supplementary Material Section B.
Compared to the synthetic framework used to generate the
Hsp90 data set, this workflow provides a radically different
approach, and incorporates concerted translation of atoms along
different directions and magnitudes in the mouth section, which
differ from domain rotations. Nonetheless, the embedding of
these mouth-wings images still manifested all essential geo-
metric characteristics previously detailed for Hsp90: presenting
SS2 across a parabolic sheet (Fig. 5), as expected. Although
the procurement of the mouth-wings model is nowhere near
an exhaustive coverage of possible motion modalities, we be-
lieve the correspondence between its outputs and those of the
independently-designed Hsp90 data set establishes some gener-
ality for our discoveries.

Finally for consideration, we have only dealt here with syn-
thetic models that specifically exhibit each of their domain mo-
tions along an independent and mutually unrestricted sequence
of quasi-continuous states. All n-wise combinations of these
bounded intervals (one for each CM) produce an n-dimensional
shape with a rectangular boundary. As a prerequisite to our
conditions for adequate continuum reconstruction, the minimum
coverage of cryo-EM images must be obtained (i.e., as achieved
near τc) so as to effectively fill in this hypercube. For experimen-
tal conditions where each state occurs with a given frequency as
dictated by its underlying free energy, this condition must be met

for the least abundant states in the data set. As it turns out, this
condition must only be met for a handful of PDs at minimum,
to be described at length in our discussion.

Once this condition is met, we have further shown that the
corresponding Laplacian eigenfunctions are well defined for
the hypercube domain [41]. However, in general, analytically
solving the Laplacian for any arbitrary boundary is impossible.
Eigenfunctions can change drastically depending on the bound-
ary, and are analytically only known for certain elementary
shapes, such as rectangles, discs, ellipses and special triangles
[47]. On the other hand, geometric machine learning approaches
can obtain solutions numerically, in principle for any boundary.
However, such geometric machine learning methods still require
the boundary to be known a priori. For systems with unknown
boundaries, the problem is intractable.

As the set of all possible molecular machines is unfathomably
complex, it is unlikely that one single algorithm could ever be
so versatile as to anticipate every possible instance. Instead, we
are interested in casting a wide enough net so as to capture the
dynamics of a large portion of these systems, which we surmise
operate within rectangular boundaries of ann-dimensional latent
space of relatively-rigid multi-body motions. However, one can
still imagine all sorts of other situations, such as a system
where one domain blocks—via steric hindrance—another do-
main from its full range of motion in a specific region of the
state space. We will return to this topic after the introduction of
the ESPER method in the following chapter.

IV. THE ESPER METHOD

Having conducted our detailed heuristic analysis, we now
describe the ESPER method for recovery of conformational
continuum from each ΩPD embedding. Our method has been
designed to leverage the geometric features discovered upon
applying ManifoldEM to synthetic data and address some of the
problems encountered before; later we will detail caveats for
data obtained from experiment. ESPER includes several novel
strategies required to form the final free-energy landscape and
corresponding 3D movies. These strategies include realignment
of eigenfunctions, partitioning of 2D subspaces, and compilation
of CM information on S2. In the following, each of these
strategies will be outlined in turn.

Eigenfunction Realignment. Previously, we described how
the observed CM eigenfunctions may be misaligned with respect
to the ideal eigenfunctions of the LBO, such that the correct
sequence of conformational information is obfuscated along
the given eigenvectors, to different degrees depending on PD.
Since these misalignments are due to the change in apparent PD-
dependent interatomic distances, they are inevitable and pose a
fundamental problem that must be addressed. As a remedy, the
ESPER method aims to isolate the set of orthogonal sinusoids
representing each CM in their complete form within each ΩPD

eigenbasis.
In our previous exposition [41], we show that by use of

appropriate rotation operators Ri,j , the canonical eigenbasis
for each CM can be recovered. As a result of this decoupling
of eigenfunctions onto a set of appropriate eigenvectors, each



468 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 6. Application of a 5D rotation matrix R2,3(θ) on an initially misaligned ΩPD embedding generated from SS2 in data-type I. The three columns in (a)
display the individual eigenfunctions (as plotted by indices corresponding to the CM1 frame of reference) before the R2,3(θ) rotation is applied, at R2,3(10

◦),
and finally at R2,3(20

◦), respectively. Note that R2,3(20
◦) maximally decomposes Ψ2 and Ψ3 into unique sinusoids (recalling that the planar distribution in Ψ3

is in fact a sinusoid when visualized in the CM2 frame of reference, and vice versa for Ψ2). The before and after effects of these rotations on the Lissajous curves
can likewise be seen in (b) and (c), respectively. Applying R2,3(20

◦) properly orients both parabolic surfaces corresponding to CM1 and CM2 (denoted with red
and blue boxes, respectively), such that the eigenvectors are orthogonally aligned with the eigenbasis of the CMs.

corresponding parabolic surface becomes aligned within its 2D
subspace, and the projected structure is again that of a single
parabola carrying information about a single CM along its curve.
Thus, as long as each parabolic trajectory corresponding to
a given CM is aligned with the plane of an independent 2D
subspace, we can restrict our study to an analysis of only a few
essential subspaces; one for each degree of freedom.

As a demonstration of this technique—termed eigenfunction
realignment—Fig. 6(a) shows the eigenvectors (reordered along
CM1) for a highly-misaligned PD eigenbasis from SS2 in data-
type I. As seen in the first column, while Ψ1 = ψ1

1 , Ψ4 = ψ2
2

and Ψ5 = ψ1
3 are in agreement with expectations, Ψ2 = ψ1

2

and Ψ3 = ψ2
1 appear heavily deformed. (Recall that the planar

distributions are in fact sinusoids when visualized in the CM2

frame of reference). As a direct consequence, any subspace
composed in combination with Ψ2 or Ψ3 will be misaligned
with respect to its ideal form (Fig. 6(b)).

ESPER is designed to correct for these misalignments using
orthogonal transformations. Specifically, we apply a rotation
operator represented by a d× d matrix O of sufficiently large
dimensions, as required for encompassing all CM subspaces, to
single-handedly reorient all aberrant surfaces in their respective
2D subspaces. The matrix O can be represented by the product
of d(d− 1)/2 rotation sub-matrices Ri,j , with each sub-matrix

parameterized by a unique angle and operating on a specific
plane. The results of this operation in a selected example can be
seen in Fig. 6(b) and (c); before and after applying a 5D rotation
matrix, respectively.

For the specific case of the 5D rotation matrix, there exist
10 rotation sub-matrices in total, with each corresponding to
a specific rotation on the eigenbasis. Of these 10 matrices, we
found that only one had to be altered for this case to achieve the
results shown, having general form

R2,3(θ)=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 cos (θ) − sin (θ) 0 · · ·
0 sin (θ) cos (θ) 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

(5)

As this R2,3(θ) operator corresponds to transformations per-
formed solely on Ψ2 and Ψ3 (row 2 and 3 of the rotation matrix,
respectively), eigenvectors previously identified as problematic
are thus isolated. The result of this transformation on the full set
of eigenvectors can be seen in the three columns of Fig. 6(a),
which visualize the R2,3(θ) rotation under 0°, 10° and 20◦,
respectively. Only Ψ2 and Ψ3 undergo change, as expected. Af-
ter this operation, the initially entangled sinusoidal information
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Algorithm 1: Eigenfunction Determination.
Input: N ×N embedding ω of ΩPD (N eigenvectors Ψi).
Output: Pairs of eigenvectors {Ψi ×Ψj} for CM parabolic

subspaces, ℘ (with harmonics eliminated); dimension of
matrix O, d; required rotation sub-matrices, Ri,j ⊂ Õ.

Parameters: Total number of Ψi to initially consider, Ñ ;
minimum cutoff for coefficient of determination (R2),
R2

min.

1: partition ω into Ñ(Ñ−1)
2 unique 2D subspaces

{Ψi ×Ψj}
2: assign each subspace a (tuple) index Ii,j ∈ I; ñ = 0
3: for each {Ψi ×Ψj} do
4: compute best-fit parabola via least squares
5: compute R2; indexed via R2

i,j

6: if R2
i,j < R2

min do remove Ii,j from I

7: for i ∈ {1, 2, . . . , Ñ − 1} do
8: for j ∈ {i+ 1, i+ 2, . . . , Ñ} do
9: if Ii,j ∈ I do

10: if R2
i,j is max(R2

i,j) do
11: ℘i = {Ψi ×Ψj} ; ai = j; ñ± 1
12: else remove Ii,j from I
13: remove all Iai,j>ai

from I
14: d = max(ai)
15: for Ii,j ∈ I do:
16: for Ii,j

′ ∈ I if Ii,j �= Ii,j
′

do
17: ((i, j) for i in Ii,j for j in Ii,j

′
) → {i, j} of Ri,j

18: form d-dimensional Ri,j matrix; e.g., (5)
19: return ℘, d, Õ

contained in part between Ψ2 and Ψ3 is maximally separated
between both eigenvectors, ultimately resulting in the alignment
of all corresponding surfaces with their 2D subspaces (Fig. 6(c)),
as desired. We also show the effects of applying a 4D rotation on
SS2 in data-type II in Movie 3, where only one of the six possible
Ri,j was altered to realign both CM1 and CM2 parabolas to the
plane of their respective 2D subspaces.

To generalize this solution for any ΩPD embedding, there are
thus three unknowns: (i) the dimensionality d of the matrix O;
(ii) the required rotation sub-matrices Ri,j ; and, for each of
these Ri,j , (iii) the rotation angle θ. After careful observation
of all PDs across numerous data sets, we have determined that
the dimensionality d and rotation operators Ri,j required are
linked to the indices of eigenvectors housing each CM parabola.
As a consequence, we need to first determine these CM sub-
spaces, which can be identified by a systematic comparison of
least-squares fits, while eliminating subspaces housing parabolic
harmonics. The pseudocode of the eigenfunction determination
procedure is given in Algorithm 1.

As a result of Algorithm 1, eigenvectors housing CM sub-
spaces ℘ are identified (line 1.11)—while excluding the possi-
bility of parabolic harmonics (line 1.13)—with ñ! 2

(ñ−2)! essential
d-dimensional Ri,j operators defined (line 1.18). The rationale
for removal of harmonics can be easily understood, since any
2D subspace formed in part by an eigenfunction corresponding
to a known CM parabola cannot combine to form some other

Algorithm 2: Eigenfunction Realignment.

Input: ω; ℘; d; Õ.
Output: Magnitude of each optimal rotation, Ri,j(θopt).
Parameters: Number of 2D histogram bins, b; range of

angles to explore, [θmin, θmax] and step size, θstep.
1: define ω̃ from first d eigenvectors of ω
2: θlist = [θmin, θmin + θstep, . . . , θmax − θstep, θmax]

3: for {Ψ̃i × Ψ̃j} ⊂ ω̃ in ℘ do
4: for Rij in Õ do
5: ξ := [ ]
6: for θ in θlist do
7: ω̂ = Ri,j (θ) · ω̃
8: generate b-bin 2D histogram H of {Ψ̂i × Ψ̂j}
9: append number of zero entries in H to ξ

10: define θopt for current Ri,j by index of max(ξ)
11: return θopt for each Ri,j per CM

orthogonal CM parabola. Once these CM subspaces are known,
we approximate the third unknown—the rotation angle—using
2D histograms. In the case of noisy data, as each 2D subspace
is rotated by a given Ri,j(θ), it exhibits a unique profile that
can be characterized by a sequence of 2D histograms on that
subspace, with one 2D histogram per each rotation angle θ.
When we plot the number of nonzero bins in the correspond-
ing 2D histogram as a function of Ri,j(θ), the minimum in
this distribution corresponds to the angle required to properly
counter-rotate each 2D subspace by the current operator (Movie
4). The pseudocode of the eigenfunction realignment procedure
is provided in Algorithm 2.

To good approximation, the d-dimensional rotations per-
formed for each Ri,j operator in Algorithm 2 realign the essen-
tial eigenfunctions of eachΩPD CM subspace. An example visu-
alization of this entire workflow, demonstrating the performance
of Algorithm 1 and Algorithm 2 applied on a SS2 embedding
from data-type II, is provided in Movie 5. We additionally per-
form a final least-squares fit Ψ̂fit on each rotated CM subspace.
For data-type III, we found an implicit equation of a general
conic section to be most flexible, defined by a polynomial of
degree two

ax2 + bxy + cy2 + dx+ ey + f = 0, (6)

which allows for the possibility of parabolic-like trajectories
with elliptic or hyperbolic features. This flexibility is essential
for fitting parabolic-like point clouds with inward curling near
the boundaries, as was observed for manifolds formed by images
modified by the CTF.

Subspace Partitioning. Once each CM subspace is iden-
tified and rotated for a single PD, we must next correct for
the nonuniform rates of change along the parabolas, which
arise innately as a result of taking the Cartesian product of
sinusoids. As a remedy, we apply an inverse-cosine mapping
on each CM eigenvector, which presents the coordinates of
the respective eigenfunctions in a space with uniform rates
of change, consistent with the ground-truth relationships be-
tween atomic-coordinate structures [41]. We will indicate any
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Fig. 7. Overview of our subspace partitioning procedure for extracting sequential conformational information from a given 2D subspace. For this example, a
CM1 subspace from data-type II is shown. Subplots (a) through (g) display our algorithm’s outputs on the CM1 subspace of an arbitrary PD from data-type II. First,
(a) shows the inverse-cosine transformation and corresponding preliminary fit using an absolute value function. Subplots (b) and (c) demonstrate the alpha-shape
polygon and Φfit trajectory defined on each halved subspace, with an anchor point designated within the central alcove. In (d), a ray is shown passing from the
anchor point through the point cloud. At the current angle θ shown, half of the area of the alpha shape has been traversed, demarcating the boundary between the
5th and 6th (of 10) CM1 bins. Subplots (e) and (f) compare the ground-truth bins—as visualized via the known sequence of images in each state—with the final
output bins produced by the ESPER method. The 1D occupancy map is provided in (g), where the horizontal red line (200 images) represents the ground-truth
occupancy assignment per CM1 state.

eigenvector Ψi under this transformation with the insignium
Φi. Each {Φi × Φj} CM subspace is then partitioned into a
set of contiguous equal-area bins, representing collectively a
quasi-continuum of conformational states, as shown in Fig. 7.

The motivation for this approach stems from the analysis
of PD disparity in the presence of noise, where it is observed
that the ground-truth bins and overall area of each point cloud
manifest in a variety of sizes depending on viewing angle.
Our area-based point-cloud fitting approach is able to correctly
chart spatial discrepancies while remaining unencumbered by
changing densities (i.e., occupancies) along each trajectory.
For partitioning of each CM subspace, we first use the alpha
shapes algorithm [49] to define the overall area of each CM
point cloud with a polygon—a generalization of the convex
hull—representing the key features of its geometric shape
(Fig. 7(b) and (c)). Next, using rays emanating from a point
opposite the point cloud’s apex (Fig. 7(d)), we divide this
polygon into a collection of contiguous sub-polygons of equal
area (Fig. 7(f)). Each of these sub-polygons, in sequence,
corresponds to one of the CM’s unique states, with the total
number of points contained within each sub-polygon defining
the corresponding state’s occupancy (Fig. 7(g)).

Since the points in any CM subspace that are aligned orthog-
onal to the respective projection plane describe ulterior CM
information, averaging points together in that subspace only
reveals the conformational information corresponding to the
current CM. Hence, cryo-EM images assigned to each state can
be averaged to generate each frame of the respective CM’s 2D
movie. This process is then repeated for the 2D subspace where
the second CM parabola resides, and so on for higher degrees of
freedom. The pseudocode for the subspace partitioning proce-
dure is given in Algorithm 3 in Supplementary Material Section
G. The 2D movies obtained by this procedure for the example
chosen can be found in Movie 6, showing both CM1 and CM2

captured along SS2 subspaces from images generated with SNR
of 0.1 and τ = 5 via data-type II. A similar output can be found
in Movie 7 for data-type IV.

Conformation Compilation. After aligning eigenfunctions
and generating all 2D movies (one per CM for each PD), both
the type of CM present in the 2D movie (e.g., CM1 or CM2)
as well as its sense must be determined individually for each
PD. This is a precondition for matching PD content globally on
S2, since the ordering direction of states along a CM trajectory
is arbitrary for each PD, due to arbitrary eigenfunction-polarity
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Fig. 8. Schematic detailing the ESPER workflow for recovery of conforma-
tional continuum, as contained within the overarching ManifoldEM framework.
For explanation of the individual steps, see main text.

assignment inherent to any eigendecomposition [50]. While this
information can be derived by visual assessment of 2D movies,
a comprehensive automated strategy has also been developed
using optical flow and belief propagation algorithms [37]. Once
CM types and senses are assigned, the 2D movie of a given
CM—housing indices of all images within its frames—can next
be compiled together with all other 2D movies of that same CM
across all PDs.

Following the ESPER method, we next generate an n-
dimensional occupancy map by taking the intersection (overlap)
of image indices corresponding to each combination of bins
in the CM trajectories per PD. (Intuition for this procedure
can be found in Supplementary Material Section G). Since
the CM coordinates are intrinsically linked by the independent
occurrence of image indices from the same PD image stack, this
operation effectively reconstructs the n-dimensional hypersur-
face on which the images jointly reside. (If only one degree of
freedom is desired, naturally no intersection is required). Next,
image stacks—one for each state—are generated and paired with
an alignment file that carries the input alignment and microscopy
information for each image therein. These files can then be used
as input for the 3D reconstruction (e.g., as can be performed
by RELION [51]) of the molecule in each state in the compiled
state space. A more detailed description of all preceding steps
in the ESPER method is additionally available [41], including
comprehensive Python code [52].

Finally, to place ESPER within the context of the overarching
ManifoldEM framework [1], we have provided a schematic in
Fig. 8. Here, the ESPER method branches off from the Manifol-
dEM workflow after completion of step 2. While ManifoldEM
next performs a series of steps required by NLSA (see Supple-
mentary Material Section E for a brief summary), ESPER instead
performs eigenfunction realignment (steps 3 and 4) and subspace
partitioning (steps 5 and 6). The two methods meet again at step
7 to achieve reconciliation of PD manifolds across S2, before
splitting off once again to form final outputs independently in
step 8.

For our analysis of synthetic continua in each data-type, we
note that the stipulation in step 1 of the workflow in Fig. 8 is
satisfied, with all PD manifolds formed with sufficient qualities
for the observance of parabolic point clouds. The performance
of the ESPER method hinges on the presence of this geometric

Fig. 9. On the left, final occupancy maps for the 20 states in CM1 (top) and
CM2 (bottom) are shown. The total number of images assigned to each state
by use of the ESPER method is shown by the height of the corresponding bar,
and the different colors represent how many of those assignments belong to
which ground-truth states (as seen in the color keys above the figure), allowing
an assessment of the true positive rate. On the right, the final 2D occupancy map
for the 400 states formed by CM1 and CM2 is shown.

information, and, as we will next show with a direct comparison
to NLSA, a great number of benefits emerge when it is available.
After this comparison, we will more concisely quantify the
conditions for parabolic point clouds during our analysis of
experimental data. Additionally, in the event that only a subset
of ΩPD embeddings exist meeting these conditions, we will
provide a strategy for alternating between use of ESPER and
NLSA within the ManifoldEM framework.

V. RESULTS WITH SYNTHETIC DATA

The results of applying the entire ESPER method on the 126
PDs from SS2 in data-type IV (with experimentally-relevant
SNR and CTF) are shown in Fig. 9 and Movie 8. The for-
mer demonstrates the accuracy of occupancy assignments for
comparison with Fig. 16 in Supplementary Material Section C,
with the 2D occupancy map obtained via the intersection of
image indices in all pairwise combinations of CM1 and CM2

bins (corrected for sense) in each of the 126 PDs. Overall,
the results prove to be very accurate, with only subtle differ-
ences in occupancies near the boundaries of each CM, which
manifest on the four corners of the 2D occupancy map. These
discrepancies are mainly due to a combination of PD disparity,
CTF-induced inward curling, and the vanishing derivatives of the
DM eigenfunctions at the boundaries [22], [50], arising in each
ΩPD embedding. To circumvent issues stemming from inclusion
of CM subspaces with poor geometric structure arising from PD
disparity, we note that while all images are used for subsequent
3D reconstructions, only those occupancy assignments for CM
subspaces above an R2 threshold value (0.7) were integrated
during this analysis. In Movie 8, the occupancy map without
R2 thresholding is shown, along with the corresponding final
3D density maps for an example trajectory (3D movie) from the
compiled 2D state space. As can be seen, the ESPER outputs
uphold the spatial relationships in the ground-truth CMs with
striking accuracy.
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Fig. 10. FSC curve comparing the state 05_10 input (ground-truth) and output
(ESPER) 3D density maps. As one proceeds along the horizontal axis from the
left (representing the center of the FT) to the right, increasingly larger shells are
compared in Fourier space, such that the largest shells (far right) correspond to
the highest resolution features. The FSC curve thus provides a global measure of
how well one 3D density map matches the other. The upper dotted line indicates
the threshold (0.143) used to determine the normal reproducible resolution [5].

We additionally validated our results by calculating the
Fourier shell correlation (FSC) [5] between 3D density maps
recovered by the ESPER method and their ground-truth coun-
terparts (Fig. 10), and found a good agreement of all states
up to a resolution near 3 Å, the ground-truth value. Q-scores
[53] were also used as a local quantitative validation of the
structural fidelity of the ESPER outputs. Using this approach on
the ground-truth atomic-coordinate structures and their corre-
sponding ESPER-recovered 3D density maps, we found highly
favorable agreement across all residues in each state. On average,
the Q-scores obtained were approximately 1.3 times that of the
expected value (i.e., the average Q-score at a resolution of 3 Å),
as calculated based on a data bank of reported resolutions of 3D
cryo-EM density maps [53].

A comparison of the outputs of ManifoldEM using either the
ESPER or NLSA route for three example PDs from data-type IV
are provided in Movie 9 (with a snapshot shown in Fig. 11), with
these PDs selected based on both the visual appearance of their
images and their embedded geometries. It should be noted that
the same preliminary steps were performed for both methods
(i.e., steps 1 and 2 in Fig. 8) before the branch in the workflow.
During this branch, recall that the ESPER method includes the
use of a unique 2D subspace per CM, while avoiding parabolic
harmonics and applying eigenfunction realignments, ultimately
resulting in 2D and 3D movies that retain the raw cryo-EM
images. In contrast, the NLSA approach operates on only one of
the initial DM eigenvectors per CM, and performs no steps for
avoiding eigenvectors or realigning subspaces. In the process,
the raw cryo-EM images are unavoidably discarded during the
NLSA procedure, ultimately resulting in final 2D and 3D movies
formed from NLSA-interpolated images.

Immediately apparent for all three PDs in Movie 9 is the
difference in quality of the Hsp90 domains under motion cor-
responding to the given CM. For ESPER, these domains are
highly resolved across all frames produced, while for NLSA
these regions are much less resolved and noticeably smeared

Fig. 11. Snapshot taken from Movie 9, showing the stark difference in reso-
lution between the Hsp90 arm motion (CM1, top-most domain) reconstructed
by NLSA and ESPER. Occupancy assignments are also compared, showing
an approximate bimodal (i.e., correct) distribution for the ESPER trajectory. An
approximation of this kind is not available via the NLSA occupancy assignments,
which also include serious problems near the boundaries.

out. Second, while the visual differences between frames of the
ESPER movies appear to evolve at an even pace, differences
in frames appear less emphasized near the beginning and end
of the NLSA movies, as if the movie was decelerating near
these regions. In addition, the NLSA occupancies share little
resemblance to our ground truth, with errors accentuated near the
boundaries. Similar boundary problems do exist but are signifi-
cantly less pronounced in the ESPER-derived occupancy maps,
with each map showing reasonable agreement with ground truth
(i.e., bimodal for CM1 and unimodal for CM2).

Differences in outputs due to methodology are most pro-
nounced for the example PD33, which is a representative from
the class of embeddings with appreciably unaligned eigenfunc-
tions from the ideal eigenbasis, with the subspace of CM2 here
requiring a larger counter-rotation than CM1. As can be seen, the
overall range of motion for CM1 is noticeably reduced compared
to outputs from ESPER. For CM2, matters are much worse.
While our procedure using ESPER correctly charted a rotated,
properly-aligned set of eigenfunctions, ManifoldEM employ-
ing NLSA used the existing embedding without accounting
for realignment. As a result, the 2D movie produced by the
NLSA method having closest resemblance to CM2 (i.e., Ψ4)
demonstrated a physically-impossible sequence of motions: the
splitting of the CM2 domain into two separate domains. At the
end of Movie 9, the NLSA 2D movies obtained for the leading
four eigenvectors are shown for comparison. Here, both (i) a
physically-impossible splitting of the CM1 domain, and (ii) a
subdued CM2 motion can be seen in the 2D movies obtained for
both Ψ2 and Ψ3. A more detailed account of this comparison is
also available [41].

In summary, while the NLSA and ESPER methods have
operated on the exact same data—even up to generation of
identical manifold embeddings—only ESPER is able to fully
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leverage the geometric structure present to consistently recapit-
ulate ground-truth CMs and occupancies from a variety of PD
manifolds. Further, while the ESPER method offers strategies to
procedurally avoid introduction of nonsensical contextual out-
put, NLSA can generate 2D movies with a wide range of defects
[35], [36], [38], with each having the potential of appearing as
a likely CM candidate to the naïve eye.

Finally, we note the total computation time for performing
these two techniques on the same CM-eigenvector (Ψ1) from
PD2, with final output a single 2D movie (as seen in Movie
9). While the application of the ESPER method to retrieve
a 2D movie required approximately three minutes, the total
computation time for NLSA for this same endeavor was over
90 times longer, with both methods having been run using a
single-processor on the same workstation (3.8 GHz 8-Core Intel
Core i7; 8 GB 2667 MHz DDR4). We additionally note that in
the current release of the ManifoldEM framework [35], [36], it is
required that this time-expensive NLSA computation is repeated
in its entirety for every ΩPD eigenvector chosen during final
compilation of the free-energy landscape. Meanwhile, applying
our intersection of image-indices approach—as afforded by
retainment of the raw cryo-EM images—the ESPER method
compiles CM content for all PDs and generates the free-energy
landscape within minutes. All in all, the ESPER method has the
potential to push the total computation time for a typical data set
of approximately 500,000 images down from weeks or months
to only a few days.

These high computational demands were rationalized for the
implementation of NLSA as a way to handle unknown man-
ifold structures [1]. In contrast, our heuristic analysis directly
informs us of anticipated characteristics of the spectral geom-
etry, enabling us to circumvent these previous unknowns, and
perform the necessary operations required to accurately retrieve
high-resolution images and a corresponding occupancy map for
all CM states. Based on this knowledge, the ESPER method
is able to produce appreciably more accurate outputs than the
previous technique in a fraction of the time.

VI. RESULTS WITH EXPERIMENTAL DATA

To assess the performance of ESPER—and the capacity of our
heuristic knowledge—on real, experimentally-obtained data, we
deploy our method on two data sets: the 80S ribosome from yeast
[1] and ryanodine receptor type 1 (RyR1, ligand-free) [54]; both
of which have been previously studied using ManifoldEM with
NLSA [1], [24]. As these data sets are used only to compare
outputs using either ESPER or NLSA, minimal conclusions
will be supplied pertaining to the biological context of the
results. Descriptions of experimental details are available in
Supplementary Section F.

Motivated by our analysis of the synthetic data, we
first searched through the experimental data sets for ΩPD

embeddings with distinct geometric features matching those
encountered during our ground-truth studies. This search was
enabled by the interactive tools in the ManifoldEM Python GUI
[36], which provides a flexible means to view the distribution
of images and occupancy of each PD as the angular width of

Fig. 12. Results of applying ESPER on a robust parabolic point cloud obtained
from the ribosomal data set. The corresponding PD was formed with a 2° angular
width, containing a total of 1825 images.

each PD is uniformly altered. For different PD angular widths,
up to 10° on S2, we embedded a set of highest-occupancy
PDs and analyzed the results. Overall, the structure of all ΩPD

embeddings observed across these data sets fell into three broad
categories, with leading subspaces exhibiting either a (i) robust;
(ii) marginal; or (iii) featureless, globular geometric form.

For the majority of manifolds analyzed, embeddings with
globular form were the most frequently encountered, followed
by marginal, then robust. We found that the presence of each
could be reliably predicted based on two parameters: the angular
width and occupancy of the respective PD. Specifically, for PDs
with small angular widths (approximately 3°) and a relatively
high occupancy (typically greater than 1000 images), robust
parabolic features emerged in the corresponding embedded sub-
spaces.

Of the two experimental data sets, only the 80S ribosome
was able to meet this criterion (and consistently for numerous
PDs), which was statistically favored given the sheer number of
images available: nearly 850,000 total. For the approximately
350,000 RyR1 images, PDs formed with 3◦ angular widths
typically contained less than 400 images each, resulting in
globular-shaped embeddings as expected from the results in
Fig. 3. In the case of the RyR1 data set, as the angular width was
increased to include a sufficient number of images in each PD,
embeddings with marginal parabolic features emerged. Even
still, these were intermixed with other PD embeddings exhibiting
no apparent geometric features, which we assume is indicative
of the presence of compounding factors, including: alignment
mis-estimations, aberrant particles, and dispersed arrangement
of angular assignments in a given PD. Further, since a vastly
different manifold [19] (i.e., not a hypercube) is formed for
images distributed onS2, the spectral geometry corresponding to
a set of images falling within increasingly larger aperture widths,
compared to a single point onS2, will become less marked by the
features of a hypercube. Given this initial assessment, we next
provide the outputs of ESPER on example subspaces exhibiting
each of the three geometric properties observed.

80S Ribosome. The results of applying subspace partitioning
(Algorithm 3) via ESPER on an embedded subspace with robust
parabolic features is shown in Fig. 12. Since robust parabolic
features were present only in the leading subspace {Ψ1 ×Ψ2},
and given appropriate use ofR2

min in Algorithm 1, eigenfunction
realignment was not applied. To note, after defining CM1 at
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{Ψ1 ×Ψ2}, Algorithm 1 additionally defined all eigenvectors
Ψj in composite with Ψ2 (i.e., {Ψ2 ×Ψj}) as CM1 harmonics.
The 2D movie results for the first four eigenvectors are provided
in Movie 10, with outputs using ESPER compared directly with
those obtained from the same ΩPD embedding using NLSA. At
the end of Movie 10, a schematic of the 80S ribosome is shown
as viewed from this PD, with domains labelled.

The 2D movies produced by NLSA align well with the
findings described in the original analysis [1], which were
obtained from a suitable great circle in that analysis, where
“typical” embeddings showed a parabolic form. The 2D NLSA
movie we obtained corresponding to Ψ1 appears to exhibit
the previously-described CM1 as seen from the current PD,
including a ratchet-like intersubunit motion, a closing of the
L1 stalk towards the intersubunit space, and a rotation of small
subunit head along its long axis [1]. The 2D movie corresponding
to Ψ2 likewise appears to describe CM2: a so-called nodding
motion of the head which is needed for selection of tRNA during
decoding [1]. However, this motion is not isolated, and is also
accompanied by similar—yet more subtle—domain motions as
seen in the Ψ1 NLSA movie. The third NLSA movie (Ψ3)
exhibits a collection of subtle domain motions as seen in the
first two NLSA movies, while in the fourth NLSA movie (Ψ4),
there appears to be a previously-undescribed shift in intensity
within the intersubunit space. Through NLSA, the original work
[1] defines the {Ψ1 ×Ψ2} subspace as the basis for constructing
the 2D energy landscape, corresponding to the motions observed
in both the Ψ1 and Ψ2 NLSA movies.

As seen in Movie 10, the ESPER method provides nearly
identical outputs as achieved by NLSA for Ψ2, Ψ3 and Ψ4.
(To note, we had to force the calculation of Ψ2 in the ESPER
workflow, as it was initially removed as a harmonic in Algorithm
1). A striking difference appears, however, in the sequence of
states describing the leading CM, and specifically as it pertains
to the trajectory of the head subunit. Instead of a simple left-
to-right head motion as seen via NLSA, the motion charted by
our method shares a likeness to a combination of the motions
observed in both the first and second NLSA movies. Specifically,
in the ESPER movie, the head subunit is first seen moving up
and to the left, followed by a downwards motion (nodding) into
the intersubunit space. Meanwhile, all other domains charted
for CM1 by the ESPER method move in a consistent fashion to
those seen in the Ψ1 NLSA movie.

As understood in our approach, and in contrast to the analysis
performed using NLSA, the {Ψ1 ×Ψ2} subspace is fundamen-
tally not a 2D state space {CM1, CM2} laid out conspicuously
like a parabola, but actually a parabolic point-cloud {ψ1

1 × ψ1
2}

representing a single degree of freedom (CM1). Accordingly,
our analysis calls into question the authenticity of the NLSA-
interpolated motion along the base of the triangular path in
the original 2D landscape [1]. This noticeable difference in
interpretation arises strictly due to the different treatments of
subspace geometry by the two methods. While NLSA projects
onto one eigenvector before organizing images into supervectors
to form interpolated NLSA movies, the ESPER method carefully
charts the geometric structure of the 2D subspace, and creates

each frame of the respective movie by selectively averaging
subsets of the available cryo-EM images.

Ryanodine receptor (RyR1). We next describe the results of
ESPER on embeddings with marginal and globular geometric
structure. In Movie 11, we show the 2D movies obtained from an
RyR1 PD containing 976 images within an angular diameter of
6°. Here, the {Ψ1 ×Ψ3} point cloud corresponding to CM1 has
a significantly more marginal parabolic appearance compared to
those observed for the ribosome, while the best-fit point cloud
for CM2 at {Ψ2 ×Ψ4} appeared devoid of parabolic features al-
together. For this embedding, the conformational motions output
by using ESPER for each 2D subspace were highly similar—
albeit noisier—to those output by NLSA for each eigenvector
individually. In either case, the leading CM corresponds to the
entire assembly of cytoplasmic shell, activation core and pore
(appearing like an opening of the central channel pore), while
CM2 corresponds to movement of the cytoplasmic shell resulting
in an apparent lowering of the handle and clamp domains.

Overall, these results are comparable to those described in the
original study [24], with no major deviations observed, other
than noise, between the performance of NLSA and ESPER. For
this latter discrepancy, we found that by noise-filtering each 2D
movie produced by ESPER using singular value decomposition
(as denoted in Movie 11 with the initials “SVD”), we were able
to very closely reproduce the appearance of the NLSA outputs
(which, recall, are intrinsically noise-reduced). This likeness
increases with the occupancy of the PD, which corresponds to
the presence of more pronounced signal in the initial 2D movie
used for decomposition during SVD. As a loose estimate, below
900 images we begin to see a significant drop in the consistency
of these SVD outputs.

VII. DISCUSSION

The findings in this study are based on heuristic information
obtained from simulated, controlled data sets which we have
thoroughly analyzed to formulate a method—termed ESPER—
able to accurately and efficiently recapitulate ground-truth infor-
mation. Specifically, we have identified the way sets of images
originating from a molecular machine’s varying atomic struc-
ture are represented in low-dimensional embeddings obtained
by prominent dimensionality-reduction techniques, and how to
navigate this spectral geometry to recover the machine’s confor-
mational continuum. Our findings on synthetic data sets—which
encompass multiple degrees of freedom, nonuniform occupancy
maps, and experimentally-relevant noise and CTF—provide a
number of new insights unaccounted for in the founding Mani-
foldEM framework [1].

We additionally introduced alternative methods for producing
synthetic data, which were used to create the Hsp90 and the
mouth-wings continua. The latter example, which includes
complex conformational changes that go beyond rotation of
domains, illustrates the broader scope of our heuristic analysis,
which not only provides insights for cryo-EM data, but also for
projection data obtained through other methods of visualization.
Several portions of our more-detailed heuristic analysis have



SEITZ et al.: RECOVERY OF CONFORMATIONAL CONTINUUM FROM SINGLE-PARTICLE CRYO-EM IMAGES 475

also been directly extended to other experimental techniques
dealing with alternative manifold inputs, such as the use of
atomic coordinates in molecular dynamics and 3D density
maps in cryo-electron tomography [41]. As such, we believe
that there is a potential for the application of these insights to
a wide range of experimental data sets beyond cryo-EM, and
particularly those obtained from systems exercising multiple
degrees of freedom in a continuous manner.

By applying the ManifoldEM framework on our synthetic
data, we demonstrate that serious problems can emerge in the
analysis, including presence of physically-impossible, stunted,
or hybrid conformational motions (CMs), as well as erroneous
occupancy maps. These issues mainly arise during one critical
step, where the geometry of each embedding must be correctly
charted to render a set of CMs and corresponding occupancies.
This task is originally performed in most part by the application
of NLSA [33], where each eigenvector of the diffusion map
(DM) embedding is treated as an independent coordinate for
a conformational change. By concatenating cryo-EM images
along a given eigenvector, interpolated images are produced via
NLSA, and re-embedded to form a new space from which a 2D
NLSA movie is extracted representing the deduced CM.

However, our heuristic analysis shows that the observed prob-
lems can arise when each eigenvector is treated as an indepen-
dent source for a CM, while in actuality, a single eigenvector can
correspond to some combination of CM eigenfunctions, as well
as to eigenfunction harmonics. We additionally demonstrate
how each CM is better mapped by a parabolic trajectory in a
2D subspace defined by two corrected eigenvectors, for which
the projection of that trajectory onto a single eigenvector is
naturally problematic. Our analysis found that it was essential
to correct for these properties in order to accurately map each
CM. Depending on the PD and data characteristics, these issues
can combine to create several systematic errors, limitations and
uncertainties that were previously pointed out [35], [36], [38].

We have developed the ESPER method as a means to cir-
cumvent these problems and refine the existing framework. The
operations introduced in this study offer several enhancements,
including our procedure for isolating CM subspaces, removing
CM harmonics, correcting for eigenfunction misalignments, and
directly retrieving each CM from the raw cryo-EM snapshots as
arranged within the initial (corrected) embedding. In the last
case, the use of the raw images is shown to improve both the
accuracy of occupancy determination and final resolution of
3D structures, while providing a vastly simplified workflow for
determining multidimensional free-energy landscapes. We have
further shown that our implementation of these enhancements
drastically decreases the overall computation cost.

All of this said, the ESPER method is not without its own
limitations and uncertainties, which are least pronounced for rel-
atively well-behaved synthetic data. Despite its remarkable per-
formance on our 126-PD data set with experimentally-relevant
SNR and CTF, we believe there is still room for improvement
of our eigenfunction realignment technique. Specifically, future
works could aim to deal with complex physical constraints
(e.g., due to steric hindrance between moving domains) as well
as data sets with a larger number of degrees of freedom. In

the former case, the use of additional rotation operators may
be required [41], creating a more complex tree of decisions,
with ESPER outputs possibly refined by a maximum-likelihood
approach or by using a neural network. Furthermore, for
noisier, less-structured embeddings, the 2D histogram method
may provide suboptimal counter-rotations. Besides, more
robust procedures should be employed to identify and fit
both highly-structured and less-structured regimes, such as a
constrained least squares method [55] or a generalized Hough
transform [56].

With the use of synthetic data, we also show that final oc-
cupancy assignments can have slight inaccuracies, which are
most emphasized near the boundaries of each CM. Although not
pursued here, since our method retains the raw cryo-EM images,
these misassignments could be further corrected to improve
3D density maps and corresponding occupancy distributions.
Specifically, an optimization approach could be designed to
compare images within each bin and reassign erroneously-
assigned snapshots into neighboring bins in which they most
likely belong. To note, a maximum-likelihood approach does
already exist that aims to extract such granular conformational
heterogeneity [42], as does a method based on neural net-
works [32]. A more comprehensive discussion of additional,
less-impactful improvements to the core ESPER method is also
available [41].

Our findings on both synthetic and experimental data sets
establish a minimum requirement for PD-manifold studies of
conformational continuum. Specifically, we have found that for
maximal fidelity of final outputs with ground truth, a data set
must contain well-structured geometry when embedded. The
performance of ESPER hinges on the presence of such geomet-
ric information, and as the quality of the embedded geometry
increases, more of our method’s benefits become available. As
seen in our two examples, the ability to sensibly avoid harmonics
or apply eigenvector rotations is only applicable up to the number
of CMs present having pronounced geometric structure that is
viable for reliable parabolic fits. If no geometric form can be
deciphered in a PD embedding, it is effectively impossible to
solve for these unknowns. Further, upstream errors in angular
assignments will only worsen these trends and, depending on
the severity of the error, critically undermine the efficacy of
the ManifoldEM framework [38]. These misalignments present
an unavoidable conflict that can only be addressed at the
source.

This limitation presents a problem when dealing with typical
experimental data sets, where it is most realistic to anticipate
the presence of only a subset of PD embeddings which have
adequate geometric information as required by the ESPER ap-
proach. Even given just one such high-quality PD, our analysis
shows that the ESPER method is able to provide essential infor-
mation on the molecular machine’s conformational spectrum. If
such a PD-embedding was both highly-populated and available
from a viewing angle where all CMs were well-visualized,
all information pertaining to the machine’s total number and
approximate types of degrees of freedom—as well as corre-
sponding occupancies—could be accurately calculated from the
images of a single PD alone.
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We next expand this idea to the more likely presence of a
subpopulation of such informative PDs, with the ESPER ap-
proach individually applied on each. To reconstruct adequate
3D density maps, alternative methods would then need to be
devised to effectively fill in conformational information for the
remaining PDs lacking geometric form. Indeed, the reliability of
our approach decreases rapidly when approaching the regime of
globular embeddings, since there is no geometric information
to leverage. For these remaining PDs, the NLSA approach is
better suited, since it can at least retrieve reasonable 2D movies
from low-occupancy embeddings. However, since the apparent
absence of geometric features in these embeddings does not dis-
count their latent presence and potential impact, NLSA outputs
may still incur the known limitations and uncertainties [35],
[36], [38]. To mitigate these unavoidable issues, we recommend
an altered use of NLSA, which is directly informed by the
conformational spectra obtained by the ESPER method in the
highest-quality PDs. Under such a scheme, the ESPER outputs
would serve as a high-quality template on which NLSA outputs
can be mapped.

In this tradeoff, there exists some gray area where it is difficult
to make out which technique should take precedence. Cer-
tainly, low-occupancy globular embeddings should be handled
by NLSA, and although the ESPER outputs on high-occupancy
globular embeddings are similarly convincing and highly consis-
tent with NLSA, it is our belief that the decision to run ESPER
over NLSA on a given PD should be governed by a sensible
coefficient of determination threshold R2

min. Specifically, for
each Ψi, the fit score R2 corresponding to the 2D subspace with
the highest fit score among all other {Ψi, Ψj} subspaces should
exceed the value of R2

min. For embeddings with fit scores above
this threshold, the ESPER method can leverage a number of
benefits over NLSA, with this number increasing as the quality of
the geometry improves. Since the appearance of robust geometry
is also dependent on high PD occupancy (Fig. 3), and high PD
occupancy boosts signal, the ESPER method is additionally
qualified to furnish high-quality SVD movies in this regime
while retaining the raw cryo-EM images.

As we have shown for RyR1, these noise-filtered 2D movies
have a quality almost identical to the respective NLSA outputs,
and serve the single purpose for use by belief propagation across
S2 during CM assignments. In noisier circumstances, SVD
results can be enhanced by binning the movie frames to boost
signal. (It is also worth investigating alternative methods for
these means). Meanwhile, the raw cryo-EM images are retained
for use during 3D reconstruction, and, aside from improving
fidelity of those outputs, allow use of our efficient approach using
intersection of image-indices in generating occupancy maps
and energy landscapes. Since our proposed strategy leaves the
PD-embeddings without discernable geometry to be analyzed
using the preexisting NLSA approach, final outputs would next
need to be combined between these two methods. Notably, for
each PD analyzed by either ESPER or NLSA, the correspond-
ing free-energy landscape and projections (i.e., raw cryo-EM
images or NLSA images, respectively) must be combined to
form a consolidated free-energy landscape and corresponding
3D density maps. If necessary, SVD could then be applied on

the final sequence of reconstructed 3D density maps, as has
previously been done in ManifoldEM [35], [36]. We anticipate
that the next public distribution of the ManifoldEM Python suite
[36] will include these advancements as a significant refinement
to its workflow. Finally, we hope that the insights gained from
these machine-learning heuristics on image ensembles will be
useful not only in the cryo-EM field, but more broadly to
other methods dealing with projection data, as well as to the
general development of techniques aimed at untangling complex
systems exercising multiple, continuous degrees of freedom.
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