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SUPPLEMENTARY MATERIALS 

A. SIMULATION OF HSP90 ATOMIC MODELS 
This section provides essential information on the 

construction of our synthetic data, with more detailed 
documentation [1] and a repository of code for generating 
custom data sets [2, 3] available in archival depositions online. 
Additional to the code in [2], our IEEE DataPort repository [3] 
includes all Python scripts for reproducing the ESPER 
workflow, as well as the full Hsp90 dataset used in our final 
analysis (termed data-type IV in this document).   

As a basis for simulation of ground truth data we chose heat 
shock protein 90 (Hsp90), which operates with two arm-like 
domains (chain A and B, containing 677 residues each) 
connected together in an overarching V-shape. In vivo, these 
arms are known to close after binding of the molecule with 
ATP, with Hsp90 acting as a chaperone to stabilize the 
structures of surrounding heat-vulnerable proteins. During its 
work cycle, Hsp90 naturally undergoes large conformational 
changes, transitioning from its two arms spread open in a full 
V-shape (inactive state) to both arms bound together along the 
protein’s central line of two-fold symmetry (active state) 
following ATP binding. 

Casting Hsp90’s biological context aside, liberties were 
taken in the choice of the synthetic model’s three 
conformational motions (CM1, CM2 and CM3), each 
corresponding to a fully-decoupled domain motion. Each CM 
was designed to cover a unique range of motions, with the 
cascade of overlaid states making up CM1 occupying the largest 
spatial region, followed in magnitude by CM2 and then by CM3. 
Using combinations of these CMs, three synthetic state spaces 
(SSn) were generated, with intrinsic dimensionalities of n = 1, 
2, 3. This was achieved by changing the positions of the first, 
the first two, or all three regions defined as rigid domains in 
their given ranges monotonically and—in the latter two cases—
independently. In Figure 13, three states each are shown of 

Hsp90 exercising its domains according to either CM1 or CM2.  
In our analysis, these state spaces are termed SS1, SS2 and 

SS3, and contain: (𝑖) 20 states exhibiting one degree of freedom 
(CM1); (𝑖𝑖) 400 states (20×20) with two degrees of freedom 
(CM1, CM2); and (𝑖𝑖𝑖) 1000 states (10×10×10) with three 
degrees of freedom (CM1, CM2, CM3), respectively. As a 
specific example of the ranges of motion present in SS3, the 
Root-Mean-Square Deviation (RMSD) was calculated for the 
differences of the atomic coordinates between neighboring 
states in each CM, yielding the values of 1.8 Å, 1.3 Å and 0.3 Å 
along CM1, CM2 and CM3, respectively; with the RMSD 
between the first and last state of each CM (representing the 
total span) yielding 15.3 Å, 11.3 Å and 2.4 Å. 

In the following, we provide a description of the atomic-
coordinate displacements between states for the specific case of 
our Hsp90 model exercising two conformational motions (CM1 
and CM2), as seen in Figure 13. These CMs were designed to 
be fully decoupled from each other, with no mutual steric 
hindrance between domains within the ranges of their motions, 
nor energy minimization performed. 

Atomic manipulations of the original PDB coordinate file 
were done using PyMOL [4]. For CM1, the chain A arm was 
rotated outwards (directly away from chain B) from its central 
hinge at residue 677, in 1° increments until a series of 20 
rotational states were defined. For each of these 20 CM1 states, 
all residues above chain B’s elbow (residues 12-442) were then 
rotated perpendicularly to the CM1 motions in 2° increments 
until a series of 20 rotational states were defined for CM2. These 
operations resulted in the creation of a total of 400 unique 
conformational states. The ensemble of these states can be 
organized in a 20×20 state space (SS2), where each entry 
represents one of the possible combinations of CM1 and CM2. 
This state space covers our synthetic model’s complete 
ensemble of physically allowable conformations (i.e., a quasi-
continuum). 

These 400 structures represented by PDB files were then 
each transformed into 3D electron density maps (EDMs) with a 

Fig. 13. Cartoon representations of Hsp90 atomic-coordinate structures displaying two CMs. In figure [A], a comparison of the CM1 first, middle, 
and final state is shown. Similarly, in figure [B], a comparison of the CM2 first, middle, and final state is shown. 
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sampling rate of 1 Å per voxel and simulated resolution of 3 Å 
using the EMAN2 [5] module “e2pdb2mrc”, where each atom 
is represented by a Gaussian with radius defined by the 
appropriate number of electrons. In reality, cryo-EM data are 
projections of the Coulomb potential distribution, which is 
distinct from the electron density distribution produced by X-
rays. For the present analysis, however, this distinction is 
irrelevant. Projections of each EDM can then be obtained via 
standard parallel line integrals along the direction of the 
electron beam so as to simulate images generated in a 
transmission electron microscope (TEM) operated in the bright-
field mode [6]. An animation cycling through the 400 SS2 states 
as represented by the Hsp90 atomic structures has been 
provided at the top of Movie 1, with the ordering of states 
following a second-hand (CM2) to minute-hand (CM1) 
“clockwise” analogy. 

B. SIMULATION OF MOUTH-WINGS MODEL 
In this section, we describe the creation of an alternative data 

set, the so-called “mouth-wings” model, that is entirely separate 
from the previously-detailed procedure used to generate each 
Hsp90 continuum. In comparison, this workflow provides a 
radically different approach to generating projection data, and 
is able to account for complex interactions within each domain 
motion. Importantly, the mouth-wings model is used only to 
demonstrate the generality of our approach; for all other 
purposes in our analysis, Hsp90 is used. With that said, we first 
introduce the mouth-wings toy model with a schematic shown 
in Figure 14-A. 

 
Fig. 14. Mouth-wings toy model capable of independently exercising 
two conformational motions: (𝑖) opening and closing of the central 
“mouth”; and (𝑖𝑖) flapping of “wings”. The underlying state space is 
described by all pairwise combinations of these 20 × 20 domain 
motions, such that 100 states are realized in total. 
 

Each conformation in the mouth-wings continuum is 
modeled and rendered using professional 3D modeling software 
(Cinema4D; [7]). To uphold the conservation of mass across all 
states, an ensemble of 2-spheres (loosely representing atoms) is 
generated in three arrays using the “cloner object”: (𝑖) a 
cylindrical array with adjustable inner radius (representing the 
main body of the object, with its central opening termed the 
“mouth”); and (𝑖𝑖, 𝑖𝑖𝑖) two thin, rectangular arrays on either of 
its sides (termed the “wings”). The spheres making up each 
section are positioned by hand (keyframed) to uniquely 

reposition across each range of their respective collective 
motion. Notably, the 2-spheres making up the “mouth” domain 
were keyframed for each state so as to gradually clump 
together, ultimately presenting a higher density towards the 
fully open state (Movie 2). In a similar vein, the “wings” were 
programmed in unison to both open at constant angle about 
their hinge, while also curling inwards. 

In this way, 20 “mouth” and 20 “wings” states are defined, 
using all combinations to generate the 20×20 state space (SS2). 
Next, via the “PyroCluster” plugin, the spheres are transformed 
into “thinking particles” (Figure 14-B), where each particle can 
be envisioned as a “puff” that, when rendered, effectively stacks 
with integrated intensity with all other particles present along 
the camera’s line of sight (Figure 14-C). A tessellated sphere is 
then generated by segmenting an icosahedron, with an 
orthographic camera assigned to each of its vertices to obtain 
projections of all states across 980 PDs spaced approximately 
5° apart. An animation of these motions as seen from different 
viewing angles can be found in Movie 2. 

C. SIMULATION OF EXPERIMENTAL CONDITIONS 
The core framework in Section A is used as a basis for the 

creation of images that more closely approximate anticipated 
experimental conditions. These conditions are incrementally 
incorporated in four steps. Specifically, we use the term data-
type I to refer to one copy of each state with pure signal and no 
CTF. Data-type II refers to uniformly-duplicated states with 
experimentally-relevant SNR, and, in addition to SNR, data-
type III further introduces experimentally-relevant CTF. For 
our final analysis, data-type IV is constructed in the same way 
as data-type III, then given a nonuniform occupancy map. 

Details for Data-type I. In the pristine scenario, for each 
EDM within a chosen state space (SSn), sets of images in five 
PDs are first obtained. The first of these PDs was chosen to be 
normal to the plane of the CM1 rotation, such that all CM1 
motions from that perspective only underwent changes in the 
plane of the projection. A similar choice was made for PD2 for 
CM2 motions, with the remaining PDs chosen at arbitrary 
positions in angular space. All projections were generated using 
the EMAN2 module “e2project3d” with no CTF applied. For 
each state space, the set of these images as generated from one 
of these five PDs forms a high-dimensional manifold ΩPD. For 
the case of SS2, this procedure resulted in the creation of 400×5 
unique 2D images for each of our 400 3D EDMs. Movie 1 
provides an animation of Hsp90 exercising through all of the 
SS2 conformations in a clockwise sequence, as viewed in each 
of these five PDs. 

Details for Data-type II. In this scenario, images generated 
for data-type I are used as a base, from which they are then 
uniformly duplicated τ times. Additive Gaussian noise is next 
applied to each image individually to grant it a specific SNR 
that is the same for all images in the set. We define the SNR by 
the ratio of each image’s signal variance to its noise variance 
[6]. Here, signal represents the 2D region of pixels 
corresponding to the average area occupied by the 
macromolecule. This region is obtained by masking out all 
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pixels within one standard deviation of each image’s mean 
intensity value, and in effect, excluding the approximately 
uniform-intensity background. This process was thus 
performed by first finding the mean pixel intensity (𝜇!"#$%&) and 
variance of the signal (𝜎!"#$%&' ), and then calculating 

 

 𝜎!"#$%& =	𝜎$#'!()& 	/	𝑆𝑁𝑅. (7) 
 

Using this parameter, we then apply additive Gaussian noise 
to each image in order to obtain an output image having the 
desired SNR (Figure 15). In this process, a sample from the 
Gaussian distribution is added to each pixel’s intensity. Each 
resulting image was then normalized such that the average pixel 
intensity and standard deviation of pixel intensities was 
approximately 0 and 1, respectively. As a note on experimental 
relevance, an SNR of 0.1 has been previously established as a 
suitable choice for experimental SNR in images obtained by 
cryo-EM [8]. 

 
Fig. 15. SNR simulation on projections of Hsp90. Specifically, the first 
image in SS1 is shown, from a PD with different values of SNR, as 
obtained via additive Gaussian noise with appropriate statistics. 

 
Details for Data-type III. This scenario again uses images 

generated for data-type I as a base. Similar to data-type II, τ = 
10 duplicates per state are then generated. However, instead of 
immediately applying additive Gaussian noise to each image, 
each image is first filtered by the TEM’s CTF in an 
experimentally relevant range. For this task, CTF is generated 
via the form 𝐻(𝑘) = sin 𝜒 − 𝐴 cos 𝜒, defined with 
 

 𝜒 = −𝜋Δ𝑧𝜆𝑘& + !
"	𝐶$	𝜆

+𝑘,. (8) 
 

Here, Δ𝑧 is a defocus value randomly assigned in the 
interval [5000, 15000] Å (positive is underfocus); 𝜆 is the 
wavelength of the electron as calculated via known TEM 
voltage; 𝑘 is the spatial frequency; 𝐶! is the spherical 
aberration; and 𝐴 denotes the fraction of amplitude to phase 
contrast [6]. Once the CTF is generated with a choice of 
relevant microscopy parameters, it is next applied through 
scalar multiplication with the Fourier transform of the image, 
followed by an inverse Fourier transform of the product. After 
this procedure, additive Gaussian noise is uniquely applied to 
each image granting an SNR of 0.1. It should be noted that later, 

when CTF correction is performed, we use exactly the same 
CTF for initially modifying each image as we use for correcting 
it, thus making no allowance for experimental inaccuracy of 
CTF estimation. 

Details for Data-type IV. For this data set, instead of a 
constant τ, an arbitrary nonuniform occupancy distribution was 
created for the SS2 {CM1, CM2} map. (I.e., no attempt was 
made to link the occupancy map to the realistic energetics of 
the molecule simulated). In thermal equilibrium, differences in 
occupancy can be attributed to differences in the molecule’s 
free energy Δ𝐺, such that an occupancy map can be transformed 
into a free-energy landscape via the Boltzmann factor 
 

 Δ𝐺/𝑘-𝑇 = − ln(𝑛/𝑛.), (9) 
 

where 𝑛 is the occupancy of the current state and 𝑛( is the 
occupancy of the maximum-occupancy state in the state space 
[9]. Here, the Boltzmann constant 𝑘) is a physical constant that 
relates the average relative free energy of particles to their bulk 
temperature 𝑇. The characteristics of our simulated occupancy 
map were chosen to provide easily distinguishable features 
along both 1D and 2D CMs: specifically, bimodal and unimodal 
distributions for CM1 and CM2, respectively (Figure 16). 

Finally, since data-type IV is used for an analysis of the final 
3D reconstructions, a sufficient number of PDs is required. The 
minimum number of equispaced PDs (𝑃*"$) on a great circle 
required for 3D tomographic reconstruction at a given 
resolution is obtained from the Crowther criterion [10] 

 

 𝑃/#! = 𝜋𝐷/	𝑟, (10) 
 

where 𝐷 is the particle diameter (120 Å, as measured in state 
{20, 20} of SS2) and 𝑟 is the targeted resolution of the 
reconstructed volume (for our purposes, 3 Å was chosen to 
match the resolution of the ground-truth EDMs). According to 
this criterion, we generated 126 equidistant PDs spaced 1.5° 
apart along one half of a great circle, chosen so as to avoid 
redundant information due to diametric mirroring. 

 
Fig. 16. 2D distribution of ground-truth occupancies for all 400 states 
in SS2, assigned equally for each PD. 
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Each of the 400 SS2 states in each of these 126 PDs was then 
duplicated based on assignments imposed from our arbitrary 
occupancy map (Figure 16), resulting in 4000 images per PD, 
with each image modified with an individual CTF having 
randomly-assigned defocus, as previously described. Finally, 
additive Gaussian noise (SNR of 0.1) was applied to each image 
such that 504,000 unique images were created in total. 

D. DIMENSIONALITY REDUCTION METHODS 
In the following, a summary of both nonlinear (DM) and 

linear (PCA) dimensionality-reduction methods is provided as 
they relate to the embedding of cryo-EM images in each PD. 

Diffusion Maps. Given a set of 𝑁 images, the DM [11] 
approach seeks to generate an optimal embedding of the data in 
a low-dimensional space, so as to preserve all relevant 
information. We first normalize each of the images by 
removing the mean and scaling to unit variance. As the kernel 
required for the DM framework is formed using pairwise 
distances, we first create the distance matrix 𝑫 (for each PD 
independently) by calculating the Euclidean distance [12] for 
every pairwise combination of its 𝑁 images. The Euclidean 
distance between two images 𝑋 = (𝑥+, 𝑥', … , 𝑥,) and 𝑌 =
(𝑦+, 𝑦', … , 𝑦,), where 𝑥" and 𝑦" denote the intensities at pixel 𝑖 
in images 𝑋 and 𝑌 (each having 𝑃 pixels), is defined by 

 

 𝐷0,2 = ?	∑ (𝑥# − 𝑦#)&3
#45 	C

	5/&. (11) 
 

The pairwise distances form a symmetric 𝑁 ×𝑁 matrix, 
where a single row represents the distance of the corresponding 
row-indexed image to each column-indexed image. Next, an 
isotropic Gaussian kernel is applied to these distances to create 
a real, symmetric similarity matrix 

 

 𝐴#,7 = exp(−𝐷#7& /2𝜀). (12) 
 

The similarity matrix 𝑨, calculated using a suitable Gaussian 
bandwidth 𝜀, is then divided by a diagonal matrix of its row 
sums to construct a symmetric, positive semidefinite stochastic 
Markov transition matrix 𝑴. This matrix represents the relative 
pairwise affinity between all images and is closely related to the 
normalized graph Laplacian 𝑳 = 𝑰 −𝑴, with 𝑰 the identity 
matrix [13]. Eigendecomposition of the matrix 𝑴 is then 
performed to retrieve an ordered set of 𝑁 eigenvalues and 
corresponding eigenvectors, which define a nonlinear spectral 
embedding of the data [14]. 

The Gaussian bandwidth (𝜀) in the above expression has a 
strong influence on the definition of similarity between the 
cryo-EM images. At small Gaussian bandwidths, the system 
takes on a relatively fine-grained definition of similarity, while 
increasing 𝜀 transforms this relationship into a more coarse-
grained notion of similarity. These notions of similarity govern 
the geometric structure of the resultant manifold embedding. 
Particularly, in the limit 𝜀 → 0 and 𝑁 → ∞, and with an 
appropriate normalization of the similarity matrix [11], the DM 
eigenvectors converge to the eigenfunctions of the LBO [14]. 
In all of our results presented, the DM embedding has been 
generated within its optimal range of Gaussian bandwidth. 

Finally, we introduce here the double-filtering kernel 
established by Dashti et al. (2014) used to account for 
introduction of a different CTF on each cryo-EM image. If 
uncorrected for, images with different CTFs—as constructed in 
our study and gathered by design in an experiment—cannot be 
directly compared using a standard distance metric. The double-
filtering kernel compensates for defocus differences by 
adjusting each pairwise Euclidean distance calculation. 
Specifically, during this calculation, the Fourier transform of 
each image is multiplied by the CTF of the image under 
comparison. This operation ensures a zero Euclidean distance 
between any two images that differ in defocus only [15]. 

Principal Component Analysis. Instead of defining the 
Gaussian kernel as previously used in the Markov transition 
matrix, PCA is performed on the data matrix 𝑍 with dimension 
𝑃 × 𝑁). Before embedding, the images are normalized by 
removing the mean and scaling to unit variance. 
Eigendecomposition is next performed on the 𝑁 ×𝑁 matrix 
𝑍-𝑍 to generate a set of orthogonal eigenvectors (i.e., principal 
components, PC) and corresponding eigenvalues. 

To note an important comparison between PCA and DM, 
the matrix 𝑍-𝑍 is symmetric and positive semi-definite (i.e., all 
eigenvalues are non-negative [16]), which is also the case for 
the Markov transition matrix used in the DM framework. 

E. OVERVIEW OF NLSA 
In the founding ManifoldEM framework [15], nonlinear 

Laplacian spectral analysis (NLSA) [17] is applied 
independently on each member of a leading set of ΩPD 
eigenvectors in order to assess the “meaning” of each in terms 
of housing potential CMs of interest. For each of these 
eigenvectors, NLSA is performed as follows. First, the raw 
images are concatenated along a chosen eigenvector to produce 
so-called “supervectors” [15]. Nonlinear singular value 
decomposition (SVD) is then used to extract noise-reduced 
NLSA images (“topos”) and their evolutions (“chronos”) from 
these supervectors. These NLSA images are then embedded to 
form a new set of eigenvectors in a different space, which 
results to high accuracy in a 1-manifold with known 
eigenfunctions {cos(𝑘𝜋𝜏.)	|	𝑘 ∈ ℤ/}, parameterized by a 
conformational parameter 𝜏. (separate from the use of 𝜏 in our 
current work). This enables the estimation of the density of 
points as a function of 𝜏. together with an ordered sequence of 
2D NLSA images. These 2D images can be arranged to form a 
2D NLSA movie, designed to represent the conformational 
signal corresponding to the eigenvector from the initially-
embedded PD manifold. Once a set of 2D NLSA movies have 
been constructed along each of the leading ΩPD eigenvectors 
independently, supervised identification of “meaningful” CM 
information is next required. 

When knowledge of only one degree of freedom is desired 
(or available), the 2D movies corresponding to the same CM in 
different PD manifolds can be further compiled across 𝑆' to 
reconstruct NLSA volumes and thus a 3D movie representing 
the CM. The NLSA procedure is much more complicated when 
information of two (or more) degrees of freedom is desired. 
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After supervised identification of two CMs, their respective 
eigenvectors for the current ΩPD are used to isolate a 2D 
subspace therein. On this {CM+, CM'} subspace, NLSA is 
performed independently along the directions of (typically) 180 
uniformly-spaced radial lines in the range 𝜃 ∈ [0, 𝜋]. This 
yields a collection of point densities (i.e., 1D occupancy maps) 
𝑛(𝜏., 𝜃) for each 𝜃. The collection of these 1D maps for all 𝜃 
constitutes the 2D Radon transform of a yet unknown 2D 
density map (i.e., the desired 2D occupancy map). An inverse 
Radon transform is then applied to reconstruct the 2D density 
map. In addition, NLSA also retrieves the noise-reduced images 
at each point in this map. As in the 1D case, this procedure must 
next be performed for the eigenvector pairs corresponding to 
{CM+, CM'} in all other ΩPD embeddings. 

F. EXPERIMENTAL DATA 
In the following, we provide a more thorough description of the 
two experimental data sets used. 

80S Ribosome. This data set was collected by the Frank lab 
as a control in the course of a study of translational initiation 
by a plant virus, and then used in the first ManifoldEM analysis 
[15]. It consists of 849,914 cryo-EM images of the yeast 80S 
ribosome. Images were recorded with a 4k×4k Tietz CCD 
detector mounted on an FEI Tecnai Polara electron microscope, 
with complete TEM details available in the supplementary 
material of the original study [15]. The use of CCD detectors is 
a distinction worth noting, as more modern approaches 
typically rely on direct electron detectors for recording images. 
For our purposes, each projection, which was originally of 
dimension 250×250 with a pixel size of 1.5 Å, was 
downsampled to 125×125 with a pixel size of 3 Å. The effect 
of this downsampling on the geometry of the manifold 
embeddings is negligible, and as validated by a separate 
ground-truth analysis, insignificant for our analysis. Finally, we 
aligned the particles and obtained their orientations using the 
“non-uniform refinement” module in cryoSPARC [18]. The 
realigned (and downsampled) dataset of 80S ribosomes has 
been made available for download on the IEEE DataPort [19]. 

RyR1. This data set was collected by Ran Zalk et al. [20], 
and consists of 360,724 cryo-EM images of RyR1 prepared 
from rabbit skeletal muscle. It was subsequently used in the 
second ManifoldEM analysis [21] as the first of two RyR1 
collections, referred to therein as the “ligand-free” collection. 
Images were recorded using an FEI Tecnai F30 Polara on a 
GATAN K2 Summit direct electron detector. Each projection 
has dimension 336×336 with a pixel size of 1.255 Å. The 
original papers should be referenced for a thorough account of 
details relating to the TEM and image processing [20, 21]. 

G. ESPER: ADDITIONAL DETAILS 
In this section, additional details are provided for specific 

steps in the ESPER method, including additional pseudocode 
and intuition for procedures. 

Subspace Partitioning. Here, the pseudocode for the 
subspace partitioning procedure is provided (i.e., Algorithm 3). 

Detailed notes on these procedures have been provided in our 
published repositories [3, 22], which includes comments 
describing less-significant decisions not explicitly noted here. 

 
Algorithm 3: Subspace Partitioning. 
Input: Rotated CM subspace, ]Ψ_" ×Ψ_0`, and for each point, the 
corresponding image and CTF; least-squares fit, Ψ_123.  
Output: CM state assignments for each point (i.e., image) in 
]Ψ_" ×Ψ_0`; 1D occupancy map; 2D conformational movie. 
Parameters: Maximum ball-tree distance, ℬ4, and minimum 
number of points for keeping a ball-tree cluster, ℬ5 for ball tree 
algorithm ℬ(ℬ4 , ℬ5) [23]; the alpha parameter, 𝛼: as increased, 
the point cloud will be fit with a tighter bounding box by alpha 
shapes algorithm 𝒜(𝛼) [24]; even number of CM states, 𝛿. 

1: scale both eigenvectors ]Ψ_" ×Ψ_0` between [−1, 1] 
2: apply cos6+: ]Ψ_" ×Ψ_0` → ]Φ_ " ×Φ_0`; Ψ_123 → Φ_ 123 
3: apply ℬ(ℬ4 , ℬ5) to temporarily prune outlier points 
4: split Φ_ 123 into halves Φ_ 1237  via 𝑣8 in vertex 𝑣 ≔ {𝑣8 , 𝑣9}  
5: split ]Φ_ " ×Φ_0` into halves {ℎ+, ℎ'} ∈ ℋ via 𝑣8 
6: 𝛽: ≔ [	] ∈ 𝛽, 1 ≤ 𝑆 ≤ 𝛿; one 𝛽: bin per CM state 𝑆  
7: for ℎ in ℋ do 
8:     apply 𝒜(𝛼) to enclose most of ℎ with a polygon 𝒫7 
9:     reinclude previous ℬ(ℬ4 , ℬ5) outliers in ℎ 
10:     {𝑥, 𝑦} ≔ 𝒫7 ∩Φ_ 1237 , defined at outer boundary of 𝒫7 
11:     𝜅 ≔ {𝑣8 , 𝑦}; anchor point for ray projections 
12:     for each 2D point 𝑝 in ℎ do 
13:         𝑟5 ≔ ray connecting 𝜅 and 𝑝 
14:         project 𝑝 onto Φ_ 1237  via 𝑟5 ∩Φ_ 1237 ; index via Φ_ 1237 {𝑝} 
15:     Σ ≔ [	] 
16:     for 𝜃 ∈ [0°, 90°] via 1° increments do 
17:         𝑟; ≔ ray emanating from 𝜅 
18:         𝒫7; ≔ lower sub-polygon formed by 𝑟; ∩ 𝒫7 
19:         append area of 𝒫7; to Σ 
20:     if ℎ+ do 𝑆7 ≔ {1, 2,… , !"} else do 𝑆7 ≔ {!" + 1,… , 𝛿} 
21:     split Φ_ 1237  into <

'
 equal-area segments 𝑆7 via Σ 

22:     for Φ_ 1237 {𝑝} in each 𝑆7 do Φ_ 1237 {𝑝} → 𝛽:#{𝑝} 
23: for 𝛽: in 𝛽 do 
24:     tally 𝛽:{𝑝} for occupancy of state 𝑆 
25:     CTF correct images corresponding to points 𝛽:{𝑝} 
26:     add CTF-corrected images for frame 𝑆 of 2D movie 
27: return 𝛽: image indices, 1D occupancy map, 2D movie 

 
Conformation Compilation. In the following figure, we 

provide some basic intuition for our method of generating 
multidimensional free-energy landscapes and corresponding 
3D movies using the ESPER “intersection of image-indices” 
approach within each PD manifold. For this schematic, we have 
simplified the problem from that of accounting for a parabolic 
surface (as observed throughout this study) to a plane; however, 
the following intuition remains the same in either case. 

Just like the plane in Figure 17-A, PD images (represented 
by points) are organized along 𝑛 orthogonal degrees of freedom 
(CMs) on a higher-dimensional hypersurface. For our needs, 
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this hypersurface can be approximated as a parabolic surface. 
Given the aforementioned uncertainty and difficulty in 
identifying and mapping this surface directly, we can instead 
refer to its set of 𝑛 orthogonal projections (e.g., Figure 17-B and 
10-C), which can be found and mapped with less difficulty. In 
the case of the plane, as in the case of our simplified illustration, 
these subspaces are 1D, while for a PD embedding, a 2D 
subspace is required to adequately capture each parabolic 
component. Recall that we identify these subspaces after 
performing eigenvector rotations to align the parabolic surface, 
such that only the CM parabola is visible in each of the 
respective 2D subspaces. Once located, we straighten each CM 
trajectory in each of these lower-dimensional projections into a 
1D trajectory, such that the parabola is transformed into 
rectilinear form. Next, we partition the points separately into 𝛽 
contiguous bins (here, β = 20), and collect the set of image 
indices falling into each bin. Note that the size of the bin 
effectively defines the precision to which we can locate each 
point on the plane, and determines the range of images falling 
within each state for our final outputs. 

 
Fig. 17. A schematic to provide intuition for our intersection of 

image-indices approach, which simplifies the complex parabolic 
features in our observed PD embeddings into linear ones, on a plane. 
Let the red point near the center of the plane [A] represent an image 
with image index 𝑝#, such that 𝑝# belongs to both CM1{12} and 
CM2{13}, and thus 𝑝# ∈ CM1{12} ∩ CM2{13}. This point, along with 
all others in the intersection CM1{12} ∩ CM2{13}, is used to both 
define an occupancy and reconstruct a 3D density map for the 
respective state 12_13. 

 
As a result, we are left with 𝑛𝛽 sets of image indices 

combined across each set of CM coordinates for each PD. For 
ease of explanation in the following notation, assume 𝑛 = 2. 
Next, we construct an empty 𝛽 × 𝛽 (i.e., 𝛽$) array 𝑷 and fill 
each element 𝑃8,9 with the set of all image indices in the 
intersection CM1{𝑥} ∩ CM2	{𝑦}, where 𝑥 and 𝑦 are bins from 
CM1 and CM2, respectively. Since embeddings from each PD 
were obtained independently, we must also correct for sense 
(the directionality of the CM coordinates) as we accumulate 
indices in 𝑷. At the end of this procedure, we sum the total 
number of entries in each 𝑃8,9 to form a 𝛽 × 𝛽 occupancy map, 
which can then be converted into a free-energy landscape via 
the Boltzmann relation. We additionally use the indices of 
images within each 𝑃8,9 to reconstruct a 3D density map for the 
set of corresponding images; in this example, producing 400 3D 
density maps in total. Naturally, this construction can be easily 
extended to three or more degrees of freedom. 

Thus, given only a set of CM subspaces–each a parabolic 

trajectory defining an orthogonal degree of freedom–and with 
knowledge of the higher-dimensional relationship between 
them (i.e., the parabolic surface, as determined throughout our 
heuristic analysis), we can reconstruct that joint geometrical 
relationship using only the intersection of image indices 
obtained in all pairwise combinations of bins from straightened 
CM coordinates. In effect, this procedure only requires that we 
collect the indices of images, without the need to integrate them 
into 1D occupancy maps. This is in contrast to the previous 
ManifoldEM methodology employing NLSA, which discards 
the original image indices. This action carries a price, however, 
and must be reversed by performing a lengthy tomographic 
reconstruction using the 1D occupancy maps to obtain the 2D 
distribution, as described in Supplementary Material Section E. 

H. SUPPLEMENTARY MOVIES 
In the following, we provide a more thorough description of 

each supplementary movie referenced throughout the text. 
Movie 1. An animation cycling through the 400 SS2 states 

as represented by the Hsp90 atomic structures (top) and 
corresponding PDs (bottom). The ordering of these states 
chronologically follows the indices described using our second-
hand and minute-hand analogy. Specifically, for SS2, the 
ordering of the states of CM2 progresses like the second hand 
of a clock, with each progression from CM2{1}→CM2{20} 
iterating CM1 (akin to the minute hand) forward once. Thus, of 
the 400 states in SS2, the first index corresponds to state 
CM1{1}_CM2{1}, the second to state CM1{1}_CM2{2}, the 
21st to state CM1{2}_CM2{1}, and the 400th to state 
CM1{20}_CM2{20}. 

Movie 2. Visualization of mouth-wing construction and 
continuum. In the first scene, on the right is a set of animations 
cycling through the 400 SS2 states of the mouth-wing toy 
model, as viewed from four example PDs. Of these, the 
northeast PD was used for the investigation in Figure 5. On the 
left is a static render of the toy model (state 400) as it is rotated 
360°. The next scene of Movie 2 showcases the sequence of 
operations performed to generate the mouth-wings model in 
Cinema 4D. In the last scene, projections of the final model 
show it animating along a conformational trajectory 
representing the diagonal of the state space. 

Movie 3. Effect of applying a 4D orthogonal rotation to the 
4D subspace—shown here using four 2D projections of that 
subspace—obtained from applying PCA on PD2 in data-type II 
(SS2 with SNR of 0.1 and 𝜏 = 10). The six rotation matrices 
required for the rotation of a 4D subspace are shown on the 
right. As can be seen, by only applying rotation operator 𝑅',> 
with 28.65°, both CM1 and CM2 parabola-housing subspaces 
are corrected—preserving all distances between points—such 
that they reside completely in the plane of {PC+, PC>} and 
{PC', PC?}, respectively. 

Movie 4. An example presentation of the 2D histogram 
approach for finding optimal angles of rotation for realigning 
CM eigenfunctions. Here, the effect of an incremental 4D 
rotation operator 𝑅',> on each 2D subspace is shown. During 
these rotations, each 2D subspace exhibits a unique profile 
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which can be characterized by the number of nonzero bins in 
the corresponding 2D histogram as a function of angle. 

Movie 5. An example PD from data-type II is chosen to 
demonstrate the inner workings of our eigenfunction 
realignment algorithm. Here, a 𝑑 = 5 dimensional subspace is 
first isolated, with each 2D subspace therein assigned an ℛ' 
value based on least-square fits. Given presence of adequate 
fits, the parabola-housing subspace in each eigenvector row is 
determined via the best ℛ' value, with the corresponding 
eigenvector indices used to procure the four rotational operators 
(of 10, for 𝑑 = 5) required to align each point cloud with the 
plane of its subspace. We next demonstrate the generation of 
2D histograms as these operators are exercised to determine the 
optimal angles. Although slight inaccuracies may emerge 
during the histogram optimization, these are typically no more 
than 5°, and prove insignificant for downstream procedures. 

Movie 6. Set of 2D movies captured along SS2 subspaces, 
with each corresponding ΩPD generated from images with SNR 
of 0.1 and 𝜏 = 5. As seen in both the first and second row, as a 
result of the integration procedure on each corresponding CM 
parabola, there is a significant difference in resolution between 
the desired CM and the CM orthogonal to it. When 3D movies 
are eventually constructed from the full set of these 2D movies 
on 𝑆', pairwise information from both CMs is incorporated into 
each volume such that these anomalies resolve. 

Movie 7. Set of 2D movies produced by ESPER from data-
type IV in SS2, corresponding to five PDs equispaced on a great 
circle. Unlike in Movie 6, which does not incorporate CTF, here 
the set of CTF-corrected and Wiener-filtered snapshots within 
each bin are integrated. Overall, the resolution of desired CM 
content in each row is superb across all states. 

Movie 8. Set of 3D reconstructions produced by ESPER 
from data-type IV in SS2, corresponding to 126 PDs, SNR of 
0.1 and CTF. A sequence of 69 3D density maps is shown, as 
seen from four orthographic views animated along a chosen 
trajectory in the retrieved 2D state space. Here, the 2D 
occupancy map before ℛ' thresholding has been supplied (in 
contrast to Figure 9). All 3D density maps were reconstructed 
using the RELION [25] “relion_reconstruct” module, without 
removal of any images in the original ensemble. Post-
processing steps for display included removal of dust (via the 
Chimera [26] “hideDust” command with size 10) and 
application of a Gaussian filter (via Chimera, using 1 Å standard 
deviations of the 3D isotropic Gaussian function). 

Movie 9. For our comparison of ESPER and NLSA, three 
example PDs were chosen from data-type IV for direct 
comparison of their 2D movies and corresponding occupancy 
maps. In the first segment of Movie 9, PD2 represents the class 
of extremely well-behaved embeddings, having near-perfect 
eigenfunction pre-alignment and irrelevant inward curling at 
the boundaries for both CM1 and CM2 point clouds. Next, as 
discussed in the main text, PD33 is a representative from the 
class of embeddings with eigenfunctions that are appreciably 
unaligned from the ideal eigenbasis. Finally, PD49 required a 
minimal 𝑑-dimensional rotation (much like PD2), but exhibited 
significant inward curling at the boundaries of its subspaces. 

The last segment of Movie 9 demonstrates the final 2D movies 
(one per eigenvector) output by NLSA for PD33 and PD49. 

Movie 10. A comparison of the results from ESPER and 
NLSA as performed on the same ΩPD embedding of the 80S 
ribosome data set. This embedding was chosen as an example 
specifically for the presence of a leading subspace with “robust” 
parabolic geometry, as obtained from a PD with 1825 images 
defined within a 2° angular width. At the end of Movie 10, a 
schematic is provided detailing the location of ribosomal 
domains as observed from the current viewing direction. We 
note that the caption “PNAS” is used only to match the CMs we 
obtained in this study using the Python ManifoldEM suite [27] 
with those described in the original study [15].  

Movie 11. A comparison of the results from ESPER and 
NLSA as performed on the same ΩPD embedding from the 
RyR1 data set. Although only housing 976 images within a 6° 
angular width, this PD was chosen as an example due to the 
presence of a noticeable—albeit “marginal”—parabolic 
appearance of a leading subspace (CM1). Overall, however, the 
occupancy of PDs with smaller angular widths was insufficient 
for producing embeddings with robust geometric features. For 
the 2D movies, the ESPER method was run with 𝛿 = 10 bins, 
with the first three eigenvectors of the SVD decomposition 
retained for noise filtering. We note that the caption “Nat 
Commun” is used only to match the CMs we obtained in this 
study using the Python ManifoldEM suite [27] with those 
described in the original study [21]. 
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I. GLOSSARY OF TERMS 

Term Definition 

80S ribosome The ribosome, the molecular machine for protein synthesis in eukaryotes 

alignment file A file that contains values of geometric parameters (such as shifts, Eulerian angles) and microscope 
parameters (such as defocus) for each image. Such a file, in standard format, is used by many cryo-EM 
image processing packages 

atomic description of state The full set of coordinates of all atoms of a molecule that is in that state 

contrast transfer function 
(CTF) 

The function (of spatial frequency) describing the linear relationship between the Fourier transform of 
the object projection and the Fourier transform of the observed image intensity.  This description is 
valid for weak phase objects and a transmission electron microscope operated in the brightfield mode 

Coulomb potential map 3D electrostatic potential distribution; the result of 3D reconstruction from projections in cryo-EM 

CTF double-filtering kernel A kernel used in Euclidean distance calculations, introduced in [15], that renders two images obtained 
with different CTFs virtually equivalent.  Without such a kernel, the manifold mapping would pick up 
differences in imaging parameters, which have no relevance in the CM ordering of image content 

Fourier shell correlation 
(FSC) 

A function (of spatial frequency) used to measure reproducibility of the results of a 3D reconstruction 
from projections.  Projection data are randomly split in half, and the resulting reconstructions are 
compared over shells in Fourier space. The FSC falls off with increasing spatial frequency, and the 
point where it falls below a given threshold nominally marks the resolution 

ligands Small molecules that bind to, or detach from, a macromolecule or molecular machine in the course of 
biological function 

microscopy parameters Values of parameters that define the imaging and electron optical settings of the microscope, and 
thereby the CTF, such as electron wavelength, spherical aberration constant, defocus, and magnification 

molecular machine A macromolecule that performs a work cyclic in the cell.  It is driven by energy from the thermal 
environment and GTP or ATP hydrolysis, and often involves binding and release of ligand molecules 

RyR1 Ryanodine receptor, or calcium release channel. A large molecule in skeletal muscle responsible for 
nerve excitation-triggered muscle contraction through calcium release 

SARS-CoV2 spike protein 
 
The protein, at the periphery of the SARS-CoV-2 virus causing the pandemic COVID-19 disease, that is 
making contact with a receptor of the human host, a step which is instrumental for the process of 
infection 
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