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SM-I. SIMULATION OF CRYO-EM ENSEMBLES FROM
ATOMIC MODELS

This section provides additional information on the con-
struction of our synthetic data, with more detailed
documentation1 and a repository of code for generating
custom datasets available online2. In the time since its
conception, this synthetic framework1,2 has already been
used as a benchmark in one external cryo-EM study on
free-energy landscapes3. Here we repeat much of the pre-
vious presentation of our methodology to provide a de-
scription of the atomic-coordinate displacements between
states for the specific case of our Hsp90 model with n = 2
exercising two conformational motions (CM1 and CM2).
These CMs were designed so as to be fully decoupled from
each other, such that no overlap occurs between the two
sets of distinct atomic displacements (Fig. S1).

Atomic manipulations of the original PDB4 coordinate
file were done using PyMOL5. For CM1, the chain A arm
was rotated outwards (directly away from chain B) from

FIG. S1: Cartoon representation of atomic coordinates for
state 20_01 with residues demarcated for CM1 (green) and
CM2 (red). The CM1 central hinge can be found near the
intersection of the blue and green regions at residue 674,
while the CM2 hinge is found near the intersection of the
blue and red regions at residue 443. To note, for SS2, the
residues making up the blue region are immobile throughout
the entire state space.

its central hinge at residue 677, in 1° increments until
a series of 20 rotational states were defined (Fig. S2-A).
For each of these 20 CM1 states, all residues above chain
B’s elbow (residues 12-442) were then rotated perpendic-
ularly to the CM1 motions in 2° increments until a series
of 20 rotational states were defined for CM2 (Fig. S2-B).
These operations resulted in the creation of a total of
400 unique conformational states. The ensemble of these
states can be organized in a 20×20 state space, where
each entry represents one of the possible combinations
of CM1 and CM2. This state space represents our syn-
thetic model’s complete ensemble of physically allowable
conformations (i.e., the quasi-continuum). The specific
size of the state space (400 states) was chosen based on
the relative scale of the protein and range of its motions,
providing approximately 3 Å and 2 Å gaps between states
over a total arc length of 60 Å and 40 Å for CM1 and
CM2, respectively (as visualized in Fig. S3). To note, ge-
ometry correction and energy minimization of generated
states were skipped to avoid introduction of unintentional
coupling of CMs.

These 400 structures represented by PDB files were
then each transformed into 3D electron density maps
(EDMs, formatted as MRC volume files) with a sam-
pling rate of 1 Å per voxel and simulated resolution of
3 Å using the EMAN27 module e2pdb2mrc, where each
atom is represented by a Gaussian with radius defined
by the appropriate number of electrons (Fig. S3). Pro-
jections of each 3D density map can then be obtained via
standard parallel line integrals along selected directions
so as to simulate images generated in the transmission
electron microscope (TEM) operated in the bright-field
mode8. This core framework is used as a basis for the
creation of images that are noisy duplicates or, finally,
incorporate a CTF in their simulation:

• Data-type I: one copy of each state with pure
signal and no CTF

• Data-type II: uniformly duplicated states with
experimentally-relevant SNR

• Data-type III: uniformly duplicated states with
experimentally-relevant SNR and CTF

An additional alteration on Data-type III is applied for
use in our final analysis, namely the introduction of a
nonuniform occupancy map.
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FIG. S2: In [A], a comparison of the CM1 first, middle and final state is shown. Likewise, in [B], a comparison of the CM2

first, middle and final state is shown. The CM2 rotation was performed perpendicularly to the CM1 rotational hinge where
only those atoms above chain B’s elbow-region were displaced. As a note, to remove the potential for overlapping residues
within certain states, residues 1-11 (making up a loose tail) were removed from both chain A and B.

FIG. S3: In [A], a volumetric overlay of the first three rotational states of CM1 (state 01_01, state 02_01, state 03_01) is
presented, visualized as electron density maps (MRC format) via Chimera6. As can be seen, only the upper arm (chain A)
has been rotationally displaced along CM1, with 3 Å gaps measured between each consecutive state at the peripheral ends of
this rotated region. In [B], a volumetric overlay of the last three rotational states of CM2 (state 20_18, state 20_19, state
20_20) is shown. Only the upper region of chain B (above the elbow) has been rotationally displaced along CM2, with 2 Å
gaps measured between each consecutive state at the peripheral ends of this rotated region. As a note, the EMAN2 module
e2pdb2mrc excludes calculations such as atomic form factors and molecular orbitals. While more accurate maps can be
constructed using other methods, this does not affect the results of our heuristic analysis.
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SM-II. SIMULATING CRYO-EM ENSEMBLES FOR
DATA-TYPE I

In the pristine scenario, for each electron density map
within each state space (SS1, SS2 and SS3), sets of images
in five chosen projection directions (PDs) are first ob-
tained. The first of these five PDs was chosen to be nor-
mal to the plane of the CM1 rotation, such that all CM1

motions from that perspective only underwent changes in
the plane of the projection. A similar choice was made
for PD2, which was projected into the plane of CM2 mo-
tions, with the remaining three PDs chosen at arbitrary
positions in angular space. All projections were gener-
ated using the EMAN29 module e2project3d with no
CTF applied, so as to maximally conserve the informa-
tion contained in each projected EDM. (See movie M1 for
a conformational animation of the molecule as viewed in
each of these five PDs). For each state space, the set
of these images as generated from one of these five PDs
forms a high-dimensional manifold ΩPD. In all, this ini-
tial procedure resulted in the creation of 400×5 unique
2D images for each of our 400 3D density maps.

As pointed out in the main text, it is important to
describe the order in which the states for each SS are in-
dexed, with this ordering repeatedly visualized by color
maps throughout this work and ultimately used to locate
each state’s coordinates within the embedded manifold.
The ordering of SS1 is trivial, with states following a
sequence showing CM1 transition from closed to open
(CM1{1} → CM1{20}; as described by the “arm” mo-
tion in Fig. S1-S3), while the ordering of SS2 and SS3
follow a clockwork pattern. For SS2, the ordering of the
states of CM2 progresses like the second hand of a clock,
with each progression from CM2{1} → CM2{20} iterat-
ing CM1 (akin to the minute hand) forward once.

Thus, of the 400 states in SS2, the first index corre-
sponds to state CM1{1}_CM2{1}, the second to state
CM1{1}_CM2{2}, the 21st to state CM1{2}_CM2{1},
and the 400th to state CM1{20}_CM2{20}. A similar
pattern holds for SS3, which now additionally includes an
hour hand in this analogy (CM1), followed by a minute
hand for CM2 and a second hand for CM3. An animation
of the molecule transforming through these sequences has
been provided in movie M1. Of course, the resulting man-
ifold embedding is independent of the ordering of the data
points10; we have merely chosen one such ordering that
heightens our awareness of trends in the subsequent out-
puts.

MOV. M1: An animation cycling through the 400 SS2 states
as represented by the Hsp90 atomic structures (top) and
corresponding PDs (bottom), as analyzed in the SS2 section
of Results. The ordering of these states chronologically
follows the indices described using our second hand and
minute hand analogy. https://www.dropbox.com/s/
2qzhrzu0jzc8bbu/M1_SS2_GroundTruth.mp4?dl=0

SM-III. ANALYSIS OF MANIFOLD SUBSPACES FOR
DATA-TYPE I

The following figures display several subspaces obtained
from embeddings of pristine (noise-free) datasets. First,
in Fig. S4, we provide an example of the inverse-cosine
mapping {Ψi, Ψj} 7→ {Φi, Φj}, as described in the main
text. Next, we show the location of each set of Cheby-
shev polynomials within several exemplary subspaces,
and demonstrate how each set corresponds to a unique
conformational motion.

https://www.dropbox.com/s/2qzhrzu0jzc8bbu/M1_SS2_GroundTruth.mp4?dl=0
https://www.dropbox.com/s/2qzhrzu0jzc8bbu/M1_SS2_GroundTruth.mp4?dl=0
https://www.dropbox.com/s/2qzhrzu0jzc8bbu/M1_SS2_GroundTruth.mp4?dl=0
https://www.dropbox.com/s/2qzhrzu0jzc8bbu/M1_SS2_GroundTruth.mp4?dl=0
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FIG. S4: For each of the three subplots, (1) analytical cosine functions are colored in gray and overlaid with (2) the
coordinates of corresponding PD1 eigenvectors, shown in different vibrant colors denoting the SS1 sequence of states. To
compare these two representations within the same coordinate system, the DM eigenvectors have been scaled to match the
range of the analytical cosines. Specifically, for x ∈ [0,1], 20 x-values were used to generate each cos(kπx) function and
subsequently scaled to match the number of SS1 states; i.e., x′ ∈ [1,20]. Similarly, each eigenvector generated by DM was
scaled to match the range of each cosine, such that Ψk ∈ [-1,1].

FIG. S5: A similar presentation as is shown in Fig. 4 for the remaining four PDs. Again, for each PD, red and blue boxes
indicate the unique set of modes for CM1 (red) and CM2 (blue), which are interspersed throughout each row in specific 2D
subspaces obtained from their respective N -dimensional embeddings. Subspaces requiring eigenvector rotations (e.g., both
parabolas in PD3) and housing subtle boundary problems (e.g., the curling inwards of the point-cloud trajectory in {Ψ3, Ψ4}
of PD5) can also be seen in certain 2D subspaces. Note that in PD2, the hierarchy of CM information is actually reversed
from those seen in the other 4 PDs, with the CM2 Chebyshev polynomials instead present along {Ψ1,Ψi} combinations (in
the first row) and CM1 Chebyshev polynomials instead along {Ψ2,Ψj} combinations (in the second row). The ordering of
sinusoidal sets in each PD is related to the magnitude of the CMs present as seen from the given viewing direction, and not
necessarily defined by the CM undergoing the largest change in the ground-truth atomic structures. Therefore, since CM2 is
projected in the plane of PD2, the magnitude of its apparent motion is visually greater than CM1, hence the reversed ranking.
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FIG. S6: Comparison of 3D subspaces obtained for images in PD5 [A] and PD4 [B] from SS3 (1000 states arranged in a
10×10×10 state space). The inset in [A] illustrates the fractal pattern that emerges when more than two conformational
motions are present, where CM3 can be seen forming a series of mini-parabolas about each of the points in the larger 10×10
parabolic surface. In [B], the hierarchy of these structures is more pronounced, with exemplary CM trajectories depicted by
the plotted lines. In section SM-XIV, we demonstrate that these patterns arise due to the additions of orthogonal cosines.

FIG. S7: A set of 2D subspaces projected from the N -dimensional embedding obtained from PD5 in SS3. The set of
conformational modes corresponding to CM1 is demarcated by the red boxes around interspersed Ψ1 plots, and occupy
specific {Ψ1, Ψi} combinations (where i > 1). Likewise, CM2 and CM3 are both separately represented by a set of their own
conformational modes; demarcated by blue boxes around interspersed Ψ3 plots and magenta boxes around interspersed Ψ6

plots (of which only the first is displayed), respectively. Specifically, CM2 modes span a set of {Ψ3, Ψj} combinations (where
j > 3) while CM3 modes span a set of {Ψ6, Ψk} combinations (where k > 6); with the eigenvector depth specified by the
apparent span of each conformational motion as seen from the given PD. As expected, points on the trajectories defined by
CM1 modes follow along the full spectrum of colors (i.e., indices 1-1000), while CM2 and CM3 points cover a span of 100 and
10 colors, respectively. Note the presence of parabolic harmonics in neighboring rows (for each CM), which are characterized
by the presence of α-shaped trajectories (e.g., as seen in {Ψ2, Ψ5}, albeit slightly rotated here from the plane of its 2D
subspace).
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SM-IV. SIMULATING CRYO-EM ENSEMBLES IN
DATA-TYPE II

Data-type II uses images generated for data-type I as
a base, from which images are uniformly duplicated τ
times. Additive Gaussian noise is next applied to each
image individually to grant it a specific SNR that is the
same for all images in the set. We define the SNR by the
ratio of each image’s signal variance (σ2

signal) to its noise
variance (σ2

noise)
8. Here, signal represents the 2D region

of pixels corresponding to the average area occupied by
the macromolecule. This region is obtained by mask-
ing out all pixels within one standard deviation of each
image’s mean intensity value; in effect, excluding the ap-
proximately uniform-intensity background. This process
was thus performed by first finding the mean pixel in-
tensity (µsignal) and variance (σ2

signal) of the signal, and
then calculating σ2

noise = σ2
signal / SNR. Using this pa-

rameter, we then apply additive Gaussian noise to each
image in order to obtain an output image having the de-
sired SNR. In this process, a sample from the Gaussian
distribution is added to each pixel’s intensity. Each re-
sulting image was then normalized such that the average
pixel intensity and standard deviation of pixel intensities
was approximately 0 and 1, respectively.

FIG. S8: First image in SS1 from PD1 with different values
of SNR via additive Gaussian noise. As a note on
experimental relevance, SNR = 0.1 has been previously
established as a suitable choice for experimental SNR in
images obtained by cryo-EM, and its low value can be
attributed to the low contrast between macromolecules and
their surrounding ice, as well as the limited electron dose
required to avoid radiation damage11.

SM-V. ANALYSIS OF SUBSPACE FITTING AND
PARTITIONING FOR DATA-TYPE II

In this section, we first present a set of 2D movies cap-
tured from SS2, as seen in movie M2. We then ana-
lyze the robustness of recovering several conformational
modes while varying τ values and SNR regimes. In
Fig. S9, we investigate the robustness for the leading
conformational modes (i.e., Chebyshev parabolas and
higher-frequency oscillations occupying specific 2D sub-
spaces of PCA embeddings) by fitting across a range of
increasing τ values. The coefficient of determination (R2)
is calculated for each mode to provide a measure for the
quality of its corresponding fit.

Fig. S10-A shows the R2 trend for each mode as τ
is incrementally increased. In Fig. S10-B, only the R2

values for the first mode are similarly calculated across
several SNR regimes. The asymptotic behavior of each
plot is expected, demarcating regions along this trajec-
tory where the intrinsic geometric structure of each mode
is optimally reinforced against the background noise. By
visual assessment of consecutive τ -defined embeddings,
for all asymptotic plots (those in both Fig. S10-A and
Fig. S10-B), we found that a suitable value of τc could be
estimated at approximately half the corresponding plot’s
maximum value of R2. For example, in Fig. S10-A, the
value of τc for the first mode is approximately 15; in
agreement with the first emergence of a robust parabola
seen in Fig. 6.

MOV. M2: Set of 2D movies captured along SS2 subspaces,
with each corresponding manifold generated from images
with SNR of 0.1 and τ = 5. As seen in both the first and
second row, as a result of the integration procedure on each
corresponding CM parabola, there is a significant difference
in resolution between the desired CM and the CM
orthogonal to it. For example, in the first row, the arm
motion appears crystal clear in each PD, while the
(orthogonal) elbow motion appears blurry; and vice versa for
the second row. When 3D movies are eventually constructed
from the full set of these 2D movies on S2, pairwise
information from both CMs is incorporated into each volume
such that these anomalies resolve. https://www.dropbox.
com/s/z27lpl4orpli1xt/M2_2D_Movies_DT2.mp4?dl=0

https://www.dropbox.com/s/z27lpl4orpli1xt/M2_2D_Movies_DT2.mp4?dl=0
https://www.dropbox.com/s/z27lpl4orpli1xt/M2_2D_Movies_DT2.mp4?dl=0
https://www.dropbox.com/s/z27lpl4orpli1xt/M2_2D_Movies_DT2.mp4?dl=0
https://www.dropbox.com/s/z27lpl4orpli1xt/M2_2D_Movies_DT2.mp4?dl=0


Supplementary Material 7

FIG. S9: Each of the above rows show a set of 2D subspaces from a τM -dimensional embedding (in SS1 where M = 20, as
obtained from an ensemble of images created with that row’s given τ -value and SNR = 0.1). Each 2D subspace within each
row displays one of the CM’s leading Chebyshev modes m via {PC1, PCm+1} (e.g., all 2D subspaces in the first column have
x-axis and y-axis defined by PC1 and PC2, respectively). Note that each of these principal components has been scaled to
have matching bounds (i.e., [-1, 1]). Lines of best fit are then computed with R2 values recorded, as displayed in the corner of
each subplot. As an aside, note the inconsistent orientation of each mode (e.g., upwards or downwards concavity for the
parabolic mode), which is due to arbitrary eigenfunction signs which naturally arise during eigendecomposition10.

FIG. S10: In [A], the R2 values are plotted for leading modes with constant SNR. The first mode corresponds to the parabolic
Chebyshev mode defined via the projection {PC1, PC2}, with the second Chebyshev mode defined via {PC1, PC3}, et cetera
(with exemplary best fits for all modes illustrated in Fig. S9). In [B], only the R2 values for the first mode are shown while
SNR is altered.
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FIG. S11: Each column shows the final outputs of our workflow for one of three equispaced 126-PD great circle trajectories,
with each trajectory computed in isolation from all others. To note, each of the great circles used are orthogonal to the other
two. In every column, total occupancy maps for CM1 and CM2 from SS2 with τ = 10 are shown, as obtained by integration of
the corresponding 20 bins for each CM (corrected for sense) in each of the 126 PDs. The total number of images as assigned
to each state via our subspace fitting procedure is shown by the height of the 20 bars. Within each bar, the different colors
represent how many of the assignments therein belonged to which ground-truth states (as seen in the legend). Note that the
black, horizontal line demarcates the expected value of each bin for the ground-truth (flat) distribution; i.e., states × PDs
= 20× 10× 126 = 25, 200 images. The subplots above each of the great-circle occupancy maps show the corresponding
histogram of R2 scores for each CM as observed in the respective 126 PD-manifold subspaces.
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SM-VI. SIMULATING CRYO-EM ENSEMBLES FOR
DATA-TYPE III

Data-type III again uses images generated for data-type
I as a base. Similar to data-type II, τ = 10 duplicates
per state are first generated. However, instead of ap-
plying additive Gaussian noise to each image, as was
done for data-type II, each image is first filtered by the
electron microscope’s contrast transfer function (CTF) in
an experimentally relevant range. For this task, CTF is
generated via the form CTF = sin(χ) − Acos(χ), where
χ = (−π∆zλk2 + 1

2πCsλ
3k4), ∆z is a defocus value ran-

domly assigned in the interval [5000, 15000] Å (positive
is underfocus); λ is the wavelength of the electron (cal-
culated via known microscope voltage); k is the spatial
frequency; Cs is the spherical aberration; and A denotes
the fraction of amplitude to phase contrast. Once the
CTF is generated with a choice of relevant microscopy
parameters, it is next applied through scalar multiplica-
tion with the Fourier transform of the image, followed by
an inverse Fourier transform of the product. After this
procedure, additive Gaussian noise is uniquely applied
to each image (SNR = 0.1) following previous protocol
laid out for data-type II. Fig. S12 on the right provides
a demonstration of this workflow, which further includes
results of CTF correction. It should be noted that we
use exactly the same CTF for initially modifying each
image as we use later in our pipeline for CTF correction,
making no allowance for experimental inaccuracy of CTF
estimation.

Upon first performing these operations on the pristine
states in SS2, we found that, in the presence of CTF for
certain PDs, gaps emerged between clusters of points,
with points within each of these clusters representing
an identical ground-truth state. For this experimentally
most relevant dataset, it was clear that we needed bet-
ter sampling of the quasi-continuum conditions. Thus,
we shortened the total span of each CM while keeping
the number of states constant, effectively increasing the
density of states for data-type III. Specifically, we low-
ered the rotational distance between neighboring states
in each CM until the corresponding point-cloud distribu-
tions appeared virtually continuous (i.e., without clusters
or discernible gaps). The resulting RMSD between con-
secutive CM1 states (e.g., state 01_01 and state 02_01)
and CM2 states (e.g., state 01_01 and state 01_02) was
0.4 Å each. In comparison to previous atomic relations
(see caption of Fig. S3), the distance between the periph-
eral atoms of adjacent CM1 states decreased to 1 Å and
for CM2 states to 1.5 Å.

FIG. S12: In the first column, image [A] is a 2D projection
of state 01_01 of PD2 taken without CTF parameters using
the EMAN29 module e2project3d. Image [D] is that same
2D projection but generated with CTF signal using the
following parameter values: defocus 13,500 Å; amplitude
contrast ratio 0.1; spherical aberration 2.7 mm; and voltage
300 kV. For both the first and second row, there are 399
other images each, created with respective attributes
corresponding to the remaining SS2 states. All of the 399
images generated similar to [D] were likewise given a random
defocus value in the interval [5000, 15000] Å. Image [B] and
[E] are the results of adding Gaussian noise to each image
[A] and [D], respectively, such that the SNR becomes 0.1. As
depicted with three cascaded arrows in the diagram, image
[C] is the 2D average of all states generated similar to image
[B], and likewise for the relationship of image [F] to image
[E]. The image size is 320× 320 pixels, with this decision
guided by [D] such that the broadening of the point-response
function stays within the image bounds. Image [G] is the
CTF-corrected version of image [E], as depicted in previous
work8 using a Wiener filter with SNR = 0.1 and exact
assignment of known CTF parameters. Finally, image [H] is
the 2D average of all CTF-corrected images similar to image
[G]. Note the similarity of [H] with [C], which is a result of
filling the missing CTF zero-crossings during the averaging
of all CTF-corrected images.
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SM-VII. OCCUPANCY ASSIGNMENTS FOR FINAL
ANALYSIS

For our final analysis dataset, a nonuniform occupancy
distribution was created for the {CM1, CM2} map, in-
stead of constant τ = 10 (Fig. S13). As noted earlier,
in thermal equilibrium, an occupancy map can be trans-
formed into a corresponding free-energy landscape via
the Boltzmann factor12: ∆G/kBT = −ln(n/n0), where
n is the occupancy of the current state and n0 is the oc-
cupancy of the maximum occupancy state in the state
space. The lowest allowable occupancy for our map was
chosen by taking the analysis in section SM-V in consid-
eration.

FIG. S13: 2D distribution of occupancies for all 400 states in
SS2, assigned equally for each PD. The net occupancy of this
state space is 4000, such that the total number of images in
the complete dataset is the product of 4000 and the number
of PDs. The characteristics of this occupancy map were
chosen to provide easily distinguishable features along both
1D and 2D conformational motions: specifically, bimodal
and unimodal distributions for CM1 and CM2, respectively.

SM-VIII. ANALYSIS OF 2D AND 3D MOVIES FOR
FINAL ANALYSIS

The following two movies M3 and M4 show a selection
of ESPER 2D and 3D sequences obtained from our final
analysis.

MOV. M3: Set of five 2D movies from SS2 PD-manifold
subspaces equispaced on a great circle. Each manifold is
generated according to data-type III, with the exception
that images are sampled from a nonuniform 2D occupancy
map (Fig. S13). The set of CTF-corrected and
Wiener-filtered snapshots within each bin are integrated, as
opposed to the raw images themselves as previously shown
in movie M2. Again, there is a significant difference in
resolution between the desired CM and orthogonal CM, with
the resolution of the desired CM superb across all states.
See movie M4 for 3D movies from the full set of these 2D
movies on S2, where pairwise information from both CMs is
incorporated to fully resolve all molecular domains in each
volume. https://www.dropbox.com/s/35l288brw25si85/
M3_2D_Movies_DT3_ELS.mp4?dl=0

https://www.dropbox.com/s/35l288brw25si85/M3_2D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/35l288brw25si85/M3_2D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/35l288brw25si85/M3_2D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/35l288brw25si85/M3_2D_Movies_DT3_ELS.mp4?dl=0
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MOV. M4: Output volumes from our final-analysis dataset:
126 PDs, SNR = 0.1 and CTF with microscopy parameters
as previously described. A sequence of 69 3D density maps
is shown as seen from four orthographic views [A-D]
animated along a chosen trajectory in the retrieved 2D state
space. Here the 2D occupancy map before R2-thresholding
has been supplied (in contrast to Fig. 10), with all volumes
reconstructed using RELION13, without removal of any
images in the original ensemble. Post-processing steps for
display of each of these volumes included removal of dust
(via Chimera’s hideDust command with size 10) and
application of a Gaussian filter (via Chimera, using 1 Å
standard deviations of the 3D isotropic Gaussian function).
https://www.dropbox.com/s/kfsddid347zb0j9/M4_3D_
Movies_DT3_ELS.mp4?dl=0

SM-IX. ANALYSIS OF SUBSPACE FITTING FOR FINAL
ANALYSIS

In the following figure, we provide a collection of 2D
subspaces for two PDs (left and right) for the final-
analysis data type (i.e., data-type III with nonuniform
occupancy assignments). As denoted in the blue boxes,
the parabolic CM subspaces tend to curl inwards sub-
stantially near their boundaries. This inward-curling ef-
fect varies depending on the CM subspace and thus on
the type of motion as visualized from the corresponding
PD. For all PDs explored, our use of the general conic
least-squares fit proved highly robust to these changes.

https://www.dropbox.com/s/kfsddid347zb0j9/M4_3D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/kfsddid347zb0j9/M4_3D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/kfsddid347zb0j9/M4_3D_Movies_DT3_ELS.mp4?dl=0
https://www.dropbox.com/s/kfsddid347zb0j9/M4_3D_Movies_DT3_ELS.mp4?dl=0
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FIG. S14: Here we show the (1) coefficient of determination (R2); and (2) discriminant of the implicit conic equation above
each subplot. The R2-value obtained for each 2D subspace is initially used before d-dim rotations to establish the location of
parabolic modes. As can be seen above, this score is significantly higher for these parabola-housing subspaces. Across all 126
PDs, non-harmonic parabola-housing subspaces were predominantly defined by a negative (elliptic) discriminant, while
harmonics were often associated with a positive (hyperbolic) value. A comparison of these plots with data-type II can be
found in movie M7.
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SM-X. OVERVIEW OF DIFFUSION MAPS

Given a set of N images, the diffusion map (DM) ap-
proach seeks to generate an optimal embedding of the
data in a low-dimensional space, so as to preserve all
relevant information. Below, we outline the DM frame-
work with considerations taken for the synthetic data
explored in our main text. As a preliminary step, we
normalize each of the images by removing the mean and
scaling to unit variance. As the kernel required for the
DM framework is formed using pairwise distances, we
first create the distance matrix D (for each PD indepen-
dently) by calculating the Euclidean distance for every
pairwise combination of its N images. The Euclidean
distance between two images X = (x1, x2, . . . , xP ) and
Y = (y1, y2, . . . , yP ), where xi and yi denote the intensi-
ties at pixel i in images X and Y (each having P pixels),
is defined14 by

DX,Y =

(
P∑
i=1

(xi − yi))2
)1/2

The pairwise distances form a symmetric N ×N square
matrix, where a single row represents the distance of
the corresponding row-indexed image to each column-
indexed image. Next, an isotropic Gaussian kernel is
applied to these distances to create a real, symmetric
similarity matrix

Aij = exp

(
−
D2

ij

2ε

)

The similarity matrix A, calculated using a suitable ε
value, is then divided by a diagonal matrix of its row sums
to construct a symmetric, positive semidefinite stochas-
tic Markov transition matrix M , representing the rela-
tive pairwise affinity between all images15. Eigendecom-
position of the matrix M is then performed to retrieve
an ordered set of N eigenvalues and corresponding eigen-
vectors (leaving out the steady-state {λ0,Ψ0} eigenvalue-
eigenvector pair, where λ0 = 1 due to the graph being
fully connected16), which define a nonlinear spectral em-
bedding of the data10.

The Gaussian bandwidth (ε) in the above expression
has a strong influence on the definition of similarity be-
tween our simulated images. At small Gaussian band-
widths, the system takes on a relatively fine-grained def-
inition of similarity (i.e., data points only see their direct
neighbors). Increasing ε transforms this relationship into
a more coarse-grained notion of similarity. These notions
of similarity govern the behavior of all subsequent steps,
and ultimately impact the geometric structure of the re-
sultant manifold embedding, and thus the DM eigenfunc-
tions. Particularly, in the limit ε 7→ 0 and N 7→ ∞,
and with an appropriate normalization of the similarity
matrix16, the diffusion map eigenvectors converge to the
eigenfunctions of the LBO10.

SM-XI. ESTIMATION OF GAUSSIAN BANDWIDTH
AND INTRINSIC DIMENSIONALITY

A detailed analysis of the preferred Gaussian bandwidth
regime for both pristine and noisy PD datasets is avail-
able in section SM-XIV-D. In summary, for all PD
datasets explored, the choice of appropriate Gaussian
bandwidth ε ∈ [a, b] proved highly flexible, presenting
embeddings with virtually identical cosine eigenfunctions
across several orders of magnitude. For values slightly
below this range, suboptimal yet structured properties
emerged. Even farther below this range, the correspond-
ing eigendecompositions did not converge, such that the
structures of these embeddings became jumbled in non-
sensical patterns. Similar disruptions occurred for all em-
beddings generated with ε > b, with such anomalies likely
arising due to arithmetic underflow encountered during
computation of the Gaussian kernel. For noisy datasets,
the range ε ∈ [a, b] coincided with the prescribed range of
ε values defined via a prominent routine for automating
this decision (Fig. S15), which uses the correlation dimen-
sion as a measure of fractal dimensionality10,15,17 (hence-
forth referred to as the bandwidth estimation method).
We have provided an automation strategy18 in our online
repository19, which uses the inflection point of a fitted
hyperbolic tangent to select this value. This automated
value was often just shy of retrieving optimal results on
pristine datasets, while excelling for cases involving ex-
perimentally relevant SNR and τ .

While proponents of the bandwidth estimation method
also claim to predict the intrinsic dimensionality n of the
dataset15, we found this recipe to be inconsistent with
ground truth (as detailed in Fig. S15 and Fig. S16). The
following two figures show the results of using the band-
width estimation plots as procured following the frac-
tal dimensionality method10,15,17, from which it is ex-
pected that (1) the linear region of each plot delimits
the range of optimal ε values, and (2) twice its slope de-
fines the intrinsic dimensionality of the dataset. While
this method’s first prong proved accurate in discovering
a suitable ε value for all datasets observed, the second
prong always proved highly inaccurate for PD datasets.
For example, in Fig. S15, the slopes of each PD within
each SS grouping (SS2 grouped at top and SS1 at bot-
tom) differ significantly (e.g., within SS1, the slopes for
PD1 through PD5 signified a dimensionality range of 1.55
to 1.95). As the ground-truth dimensionality of SS1 de-
fined via the rotation of a domain of an atomic struc-
ture is one, these trends demonstrate that the bandwidth
estimation method—while sufficient for measuring the
proper ε value—is insufficient for correctly determining
the dataset’s intrinsic dimensionality. Fig. S16 provides
further investigation of these results in the presence of
noise, where the intrinsic dimensionality was still signifi-
cantly overestimated.

Given these results, there remains uncertainty on how
to best determine the intrinsic dimensionality of any
given dataset (i.e., the number of CMs present to search
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for). The estimation of the intrinsic dimensionality of
a manifold is a longstanding mathematical problem20,21,
which we consider an open issue. As it stands, this in-
formation must instead be intuited via a careful analysis
of final outputs (i.e., 2D and 3D movies) generated from
our framework.
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FIG. S15: bandwidth estimation plots as obtained via the fractal dimensionality method. For all PDs, the optimal ε values
were manually checked through trial and error, with the optimal range of ε values approximately [10−4, 10]. It can be seen
that the linear portions of all bandwidth plots for each PD cover a similar ε range, regardless of SS1 or SS2 (bottom group
and top group, respectively). Instead, PDs from either state space differ mainly by their vertical position in the plot.

FIG. S16: Bandwidth estimation plots are shown for [A] PD2 in SS2 (SNR∞, as previously shown in Fig. S15) and [B] PD2 in
SS2 (SNR = 0.1 and τ = 10). As can be seen via twice the slope of the fit for each linear region, the ground-truth intrinsic
dimensionality of these datasets (n = 2) is erroneously defined via this method, and increasingly so with the introduction of
noise. However, even in the presence of noise, the criterion for the optimal ε range still proved suitable, with the
corresponding eigendecomposition converging for ε ∈ [10−11, 1]. Note also the asymmetry of each curve and the magnitude of
their curvature, which leads to uncertainties in fitting these regions with the prescribed linear model.
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SM-XII. COMPARISON OF PCA AND DM

In this section, we complete our comparison of diffu-
sion maps with principal component analysis. First, we
briefly readdress our a priori expectations as informed by
spectral theory22. Both DM and PCA are kernel meth-
ods which entail the use of a symmetric matrix (i.e., a
Markov transition matrix and a covariance matrix, re-
spectively). Symmetric matrices have many convenient
properties, and, particularly for our interest, are diago-
nalizable with mutually orthogonal eigenvectors, and cor-
responding real, non-negative eigenvalues. As shown via
the principal axes theorem, this diagonalization is deter-
mined by the matrix’s eigenvectors, which are used to
align the innate principal axes of the graph into stan-
dard position. When organized along these principal
axes, distinct classes of geometries associated with the
quadratic form of the symmetric matrix (called “quadric
hypersurfaces”) clearly emerge, with the characteristics
of each surface specifically defined by its corresponding
eigenvalue22.

When a symmetric matrix has only positive or null
eigenvalues, the matrix is “positive semidefinite”. Low-
dimensional quadrics generated by positive semidefinite
matrices include elliptic cylinders, parabolic cylinders,
hyperbolic cylinders and cones23). However, our case
is of substantial complexity, as we will be investigat-
ing quadric hypersurfaces of graphs generated with in-
clusion of multiple degrees of freedom and noise. Indeed,
as the symmetric matrix of both PCA and DM is posi-
tive semidefinite, we anticipate to recognize one of these
forms within subspaces of each subsequent embedding
(e.g., parabolic cylinders in Fig. S6). With these fun-
damental similarities in mind, we next display figures
(Fig. S17-18) referenced in our main text, which show
striking similarity between results obtained by these two
techniques. This is further supported by the fact that the
eigenvectors of DM generated with very large ε-values
converge to the eigenvectors of PCA.

SM-XIII. THE LAPLACE-BELTRAMI OPERATOR ON A
RIEMANNIAN MANIFOLD

The Laplace-Beltrami operator (LBO) acting on a scalar
function f on a compact (closed and bounded)24 Rieman-
nian manifold is given by25–27

∇2f = g−1/2 ∂i (g1/2gij ∂j f)

where g = det(gij) and gij are the components of the
metric tensor. Specifically, we are interested in the eigen-
functions of the LBO, ∇2f = λf , noting these form a
complete basis in the functional space L2(Ω) of mea-
surable and square-integrable functions on the manifold
Ω28. For a bounded manifold, the eigenfunctions must
further satisfy boundary conditions; for example, DM re-
quires the Neumann boundary conditions16, such that

the derivatives on the boundaries vanish. Therefore, the
eigenfunctions depend also on the boundary of Ω.

If g is constant on Ω, the expression simplifies to∇2f =
gij ∂i ∂j f , where gij are constant values. For example,
in two dimensions

∇2f = (g11(∂1)2 + g22(∂2)2 + 2g12∂1∂2)f

Moreover, if g11 = g22 = 1, we recognize the common
Laplacian in Euclidean coordinates, which is the sum of
pure second derivatives25

∇2 =

d∑
i=1

∂2i

It is well understood that the eigenfunctions of the LBO
on a manifold Ω carry useful information about its intrin-
sic geometry, and are thus important for understanding
many systems. For compact manifolds with a boundary,
as an example, these eigenfunctions are the modes of vi-
bration of a string (1D) or a membrane (2D). For com-
pact manifolds without a boundary (closed manifolds),
the well-known spherical harmonics are eigenfunctions on
the surface of the 2-sphere. In the field of structural biol-
ogy, the eigenfunctions of the LBO on SO(3), which are
the Wigner-D functions, have been used for retrieving the
unknown orientations of single-particle X-ray and cryo-
EM snapshots29. In general, the eigenfunctions of the
LBO on different manifolds are fundamental to mathe-
matics and science, and describe a wide diversity of seem-
ingly disparate phenomena—reflecting the so-called “un-
derlying unity of nature”—from quantum mechanics to
gravitational fields30.
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FIG. S17: Comparisons of 2D subspaces and eigenvalue spectra obtained via PCA (left) and DM (right) for PD1 in SS2

across three SNR regimes (one SNR regime per column; with uniform occupancy τ = 1). As can be seen in both linear and
nonlinear dimensionality reduction frameworks, the well-defined structure of these subspaces deteriorates rapidly as increasing
amounts of additive Gaussian noise is introduced on each image. Overall, the outputs of PCA on these datasets revealed a
striking resemblance to those produced by DM. Importantly, the parabolic mode is conserved for both frameworks even
within experimental regimes (SNR = 0.1).

FIG. S18: Comparison of 2D subspaces obtained via PCA (left) and DM (right) for PD2 in SS2, with image sets generated
with SNR = 0.1 and τ = 10. Colors have been assigned to data points so as to match the ground-truth indices of states
covering CM2, which is the most visually pronounced motion as viewed from this PD. Here, the CM2 subspaces can be seen
in the first row ({Ψ1,Ψi | i > 1}), the CM1 subspaces in the second row ({Ψ2,Ψj | j > 2}), CM2 first-harmonics in the third
row (({Ψ3,Ψk | k > 3})), CM1 first-harmonics in the fourth row, and CM2 second-harmonics in the fifth row. Overall, the
similarity in outputs between these two frameworks is undeniable, with the only visual difference appearing in the arbitrary
directionality (sense) of each coordinate; which is to be expected.
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SM-XIV. ANALYSIS OF THE LBO EIGENFUNCTIONS

In the following subsections (A-D), we perform an anal-
ysis of the eigenfunctions of the LBO on a set of dis-
tinct manifolds Ω. First, in subsection A, we use the
DM framework to investigate the known eigenfunctions of
the LBO on the interval and rectangular domains, which
are cosines. We expect this investigation to inform our
heuristic discoveries for the PD embeddings (ΩPD), where
similar cosine eigenfunctions were observed for each de-
gree of freedom. As well, we will use these ideal manifolds
in A to build intuition for rotations needed to realign es-
sential eigenfunctions, which were observed in the ΩPD

embeddings. Following this analysis, we ultimately detail
how the structure of manifolds obtained from a confor-
mational state space transforms as the data type is trans-
lated stepwise from (B) atomic models ΩACS, to (C) 3D
electron density maps ΩEDM, and finally, to (D) 2D pro-
jections ΩPD. In the last case, recall that 2D projections
are the only form of data readily accessible in a cryo-EM
experiment.

A. Eigenfunctions of the latent space

To get insight into the characteristics of the ΩPD eigen-
functions, we abstract the manifold of the PD-dataset
as a Euclidean space with rectangular boundaries. This
is motivated by the most simple representation of our
ground-truth state space of atomic models, where the re-
lationship between equispaced coordinates in the prior
matches the relationship between equiangular molecular
domain rotations in the latter. By separately embedding
the collection of states in each of these two data types and
comparing their resulting eigenfunctions, we will show
that these two spaces are nearly identical. In effect, the
rectangular domain can be viewed as the conformational
latent space to which our collection of more advanced
state spaces is compared. We will additionally show that
for the embeddings of 3D electron density maps and 2D
projections, the mapping relative to the latent space be-
comes distorted. This effect can be explained by a change
of the metric induced in the process.

In the 1D space, a set of pairwise distances between a
collection of equispaced coordinates on a line carries all
essential information necessary to model the pairwise dis-
tances between a sequence of atomic models with molec-
ular domain rotated by a constant angular increment.
To represent our SS1 PD dataset, we uniformly sam-
ple N = 50 equispaced points from a 1D interval X ∈
[0, ` = 1] ⊂ R, with each of these 50 points representing
a unique state of the molecule. Following the DM frame-
work, we then calculate the distance matrix for this col-
lection of points and embed the data in a low-dimensional
space. As a note, for all embeddings that follow, we will
show that two characteristic regimes emerge depending
on choice of Gaussian bandwidth, which we will denote
with ε↓ and ε↑ for the small and large regime, respec-

tively. For the smaller Gaussian bandwidth, a cosine se-
ries emerged for all eigenfunctions (Fig. S19-A), in very
good agreement with the Laplacian on a 1D Euclidean in-
terval with Neumann boundary conditions. Specifically,
we anticipate (and retrieve) canonical28 eigenfunctions of
the form ψv(x) = {cos(vπx/`) | k ≥ 1}. As the Gaus-
sian bandwidth was incrementally increased from ε↓ to
ε↑, this cosine series smoothly transformed into a differ-
ent complete, orthogonal set: the Legendre polynomi-
als (Fig. S19-B). These Legendre polynomials, however,
only occur for hyperrectangles, which are n-dimensional
Cartesian products of orthogonal intervals

Next, to represent our SS2 PD dataset, we uniformly
sample N = 50× 50 points from a 2D interval X × Y ∈
[0, `x = 1.1] × [0, `y = 1] ⊂ R2. For its illustrative prop-
erties, we avoid degeneracy by ensuring (`x/`y)2 is not a
simple ratio28. Again, we follow the DM framework by
calculating the pairwise distances between these points
and embedding the data in a low-dimensional space.
As demonstrated in Fig. S19-C, the set of eigenfunc-
tions obtained in the smaller Gaussian bandwidth regime
matched our a priori expectations for the Laplacian on a
rectangular domain with Neumann boundary conditions.
These canonical eigenfunctions are28

ψvw(x, y) = {cos(vπx/`x)cos(wπy/`y) | v, w ≤ 0}

following the same pattern for higher-dimensional do-
mains ΩR = [0, `1] × · · · × [0, `n] ⊂ Rn (with `i > 0).
Again, as we incrementally increased the Gaussian band-
width from ε↓ to ε↑, this set of complete and orthogonal
cosines smoothly transformed into the orthogonal Legen-
dre polynomials set, which are now a function of both x
and y, as expected (Fig. S19-D). Importantly, the lead-
ing Legendre polynomials provide a direct, linear map of
the input data points, a consequence of the linear terms
P1(x) and P1(y). This is preferred over the non-linear
map achieved by the cosine functions, as it is unencum-
bered by nuisances such as non-uniform rates of change
and parabolic harmonics. In subsections C and D, how-
ever, we will show that this preferred behavior cannot
be obtained for 3D electron density maps and 2D projec-
tions.

Returning to the smaller of the two Gaussian
bandwidth regimes, we next compare the previous non-
degenerate rectangular results to those from a degenerate
square domain, with N = 50 × 50 points equispaced
identically along X and Y (Fig. S20-A). Due to the
presence of degenerate eigenvalues, which can arise for
domains with a rational ratio28 (`x/`y)2, we encounter
pairs of eigenfunctions that appear different from the
non-degenerate case of the rectangle28 (as seen, for
example, by pairs {Ψ1,Ψ2} and {Ψ4,Ψ5} in Fig. S20-A).
In Fig. S20-C, we illustrate that these eigenfunctions are
just rotated within their degenerate space, exactly as
expected. We note that an eigenfunction associated with
a degenerate eigenvalue is a linear combination of the
degenerate eigenfunctions28, where the normalization of
the eigenfunctions restricts this linear transformation to
a rotation and reflection (i.e., the group of orthogonal
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FIG. S19: DM eigenfunctions of the 1D interval for small (ε↓ = 5× 10−5) and large (ε↑ = 10) Gaussian bandwidths are shown
in [A] and [B], respectively. Likewise, eigenfunctions of the N = 50× 50 rectangular (nondegenerate) domain for small and
large Gaussian bandwidth are shown in [C] and [D], respectively. As was done in the main text, eigenfunctions have been
independently displayed by indexing each by its ground-truth ordering via sequential x-coordinates. For [C] and [D], a similar
appearance of eigenfunction plots, albeit interchanged, would be seen when indexing instead via sequential y-coordinates. In
[C], each eigenfunction’s corresponding modes {v, w} have also been provided in the top right-hand corner. For all four
subplots, pairwise combinations of eigenfunctions are additionally shown, which can be visualized after an embedding without
any ground-truth knowledge.

transformations). For example, the {Ψ1,Ψ2} pair is of
form Ψ′ = RT Ψ such that[

Ψ′1
Ψ′2

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
=

[
cos(πx)
cos(πy)

]
[
Ψ′1(θ)
Ψ′2(θ)

]
=

[
cos(θ)cos(πx) + sin(θ)cos(πy)
−sin(θ)cos(πy) + cos(θ)cos(πx)

]
As seen for Ψ6 in Fig. S20-A, these summands can also
have the form of two products Ψ6 = Acos(πx)cos(2πy) +
Bcos(2πx)cos(πy), with any A and B such that A2 +
B2 6= 0. Hence, it can be seen that these aberrant eigen-
function pairs are defined by an admixture of cosines in
a higher-dimensional space, with form

Ψi = Acos(vπx)cos(wπy) +Bcos(wπx)cos(vπy)

= Aψvw +Bψwv

By using an appropriate rotation operator Ri,j , the
summands within each eigenfunction pair can be

maximally separated among both members Ψi = ψvw

and Ψj = ψwv, such that the canonical eigenbasis is
recovered (Fig. S20-B). As demonstrated using analyt-
ical expressions ψ1,0 = cos(πx) and ψ0,1 = cos(πy) in
Fig. S20-C, this separation occurs multiples of θ = 90°
apart. In the Fig. S20-C example, at R1,2(45°), these
eigenfunctions have form[

Ψ′1(θ = 45◦)
Ψ′2(θ = 45◦)

]
=

[ √
2/2cos(πx) +

√
2/2cos(πy)

−
√

2/2cos(πy) +
√

2/2cos(πx)

]
which decouples back into two distinct modes (cos(πy)
and cos(πx) for Ψ1 and Ψ2 respectively) at R1,2(90°).
A similar result is obtained by applying this oper-
ation on the appropriate eigenfunctions obtained via
DM, with each initially assuming a random rotation an-
gle (Fig. S20-A) requiring a specific correction Ri,j(θ)
(Fig. S20-B).

While degeneracy suggests a possible cause for the ap-
pearance of eigenfunction misalignments in ΩPD, we note
that it is a rather rare event in our data sets and that it



Supplementary Material 20

FIG. S20: DM eigenfunctions of the N = 50× 50 square domain for small Gaussian bandwidth (ε↓ = 5× 10−5) are shown in
[A] and [B] before and after high-dimensional rotations, respectively. It can be seen here that pairs of eigenfunctions exist
that contain relationships aberrant to the canonical eigenfunction form (Fig. S19-C). Two such pairs have been highlighted in
red and blue, respectively, with the members of each pair always rotated 90° apart. To note, as any rotation can happen in
the presence of degeneracy, this initial rotation is an arbitrary one. This property is demonstrated via the schematic in [C],
which shows the angular relationship between two analytically-generated functions (cos(πx) and cos(πy), each displayed in
the reference frame of X) as they are jointly rotated 90°. By applying rotation operators R1,2(θ) = −19° and R4,5(θ) = 45°
independently to two such aberrant pairs in [A], the canonical eigenfunction form begins to recover in [B], and more so as
additional operators are intelligently applied.

can be identified from the eigenvalue spectrum. Pairs of
rotated eigenfunctions, at least approximately, can also
be mimicked when domains have undergone certain el-
ementary geometric transformations. For example, by
performing an affine transformation on a rectangle ΩR

to form a parallelogram ΩP , we observed a rotation of
the first two eigenvectors, as similarly seen in Fig. S20-A.
Recall that an affine mapping preserves collinearity and
ratios of distances, but in general not distances and an-
gles. In subsection C, we will explore the possibility of
other classes of geometric transformations on ΩR.

As a final point in this section, we illustrate our method
for retrieving the canonical eigenfunctions buried within
an embedding, which has been used in Fig. S19 and
Fig. S20, and extensively throughout the main text.
Fig. S21 provides a schematic using the known analyti-
cal eigenfunctions (Fig. S21-B and Fig. S21-C) chosen so
as to match the results from DM on the square, degen-
erate ΩR. In Fig. S21-A, we display the eigenfunctions
from Fig. S20-A in two different reference frames corre-
sponding to our ground-truth knowledge. Specifically, we

plot the points in each eigenvector in a sequence corre-
sponding to their initial ground-truth arrangement along
each degree of freedom (for the rectangular Euclidean
space, along either X or Y ), which is shown in the first
and second row of Fig. S21-A, respectively. As shown
in Fig. S21-B and Fig. S21-C, a given reference frame
captures the eigenfunction on a projected plane in the
n-dimensional space where it resides.

B. Eigenfunctions of the atomic models

We next investigate the manifolds obtained from the
state spaces formed from a quasi-continuum of atomic-
coordinate structures, each represented by a set of 3D
atomic-coordinates 3m (e.g., Fig. S2). We generate
these structures as described in the first step of our
synthetic-generation protocol (section SM-I), which are
subsequently used there to produce a corresponding set
of 3D electron density maps and 2D projections. Impor-
tantly, the set of these 3D atomic-coordinate structures in
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FIG. S21: DM eigenfunctions from Fig. S20-A are shown again in the first row of [A], which were displayed by ordering the
points of the embedding in a sequence based on the ground-truth x-coordinates. The second row of [A] displays these
eigenfunctions instead via the sequential ordering of ground-truth y-coordinates. Subplots [B] and [C] are analytically
generated so as to match the appearance of Ψ1 and Ψ2 in the first and second row of [A], respectively. For this presentation,
the equations Ψ1 = cos(θ)cos(πx) + sin(θ)cos(πy) and Ψ2 = −sin(θ)cos(πx) + cos(θ)cos(πy) were used, with θ = 250°. As can
be seen in [B] and [C], each eigenfunction exists in an n-dimensional space defined by the n degrees of freedom of the system.
Thus, by displaying a point from the manifold along a sequence in the embedding corresponding to a known degree of
freedom, we are effectively viewing each eigenfunction on a projected plane in its n-dimensional space.

ΩACS ⊂ R3m represent the fundamental biophysical iden-
tity of each state, from which the cryo-EM experiment
could only obtain two-dimensional information in the
form of images. Following the DM framework, we first
calculated the distance matrix for SS2, which we obtained
by the root-mean-square deviation (RMSD) for each pair
of its 400 3D atomic-coordinates structures (PDB files).
The RMSD between two sets of atomic-coordinate struc-
tures X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) each
composed of m atoms is defined as

RMSD(X,Y ) =

√√√√ 1

m

m∑
i=1

‖(xi − yi)‖2

which is up to an irrelevant factor of m−1/2 equal to the
Euclidean distance D(X,Y ).

The resulting DM embeddings for the small and large
Gaussian bandwidth regimes are shown in Fig. S22-A
and Fig. S22-B, respectively, and share a strong resem-
blance to those found for the latent rectangular domain
(Fig. S19). Again we note the presence of cosine eigen-
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FIG. S22: DM eigenfunctions obtained for 20× 20 = 400 atomic models occupying SS2 for small (ε↓ = 0.1) and large
(ε↑ = 1000) Gaussian bandwidths are shown in [A] and [B], respectively. Leading eigenfunctions are displayed in the first two
rows via sequential indexing along the ground-truth CM1 coordinates (i.e., equispaced rotations of chain A). In [A], each
eigenfunction’s corresponding modes {v, w} are provided in the top right-hand corner, showing exceptional agreement with
the LBO eigenfunctions on a rectangular domain with Neumann boundary conditions. We additionally note the absence of
any significant eigenfunction misalignments.

functions for the small Gaussian bandwidth regime, and
a near-perfect linear form (via leading Legendre polyno-
mials) in the large Gaussian bandwidth regime ({Ψ1,Ψ2}
in Fig. S22-B). For the latter, we will show this feature is
a luxury not obtained in the other data types explored.
In the small Gaussian bandwidth regime, we can iden-
tify both our CM1 and CM2 parabolas residing in the
subspaces {Ψ1,Ψ3} and {Ψ2,Ψ8}, respectively. Similar
results were found for the manifold embeddings gener-
ated using 3D atomic-coordinate structures organized in
SS1 and SS3.

The striking similarity between the eigenfunctions of
the latent space and the eigenfunctions of the atomic
models can be rationalized as follows. If the range of
a single body rotation is moderate (. 30°), the distance
Dij between any two states i and j within this range is
to high accuracy† Dij = Θij(

∑m
k=1 r

2
k)1/2, where rk is

the distance of atom k away from the rotation axis, m
the number of atoms of the body, and Θij the angular
difference between the states. Therefore, Dij is directly
proportional to Θij . If there are multiple independent
body rotations (i.e., CMs) present, the individual dis-
tances add in quadrature as in a Euclidean space. Also
not investigated in this paper, the linearity holds for body
translations as well, where the distance is directly pro-
portional to the magnitude of the translation. Thus, the
agreement between the eigenfunctions of the latent space
and the ones of the atomic models is a consequence of the
linear relationship between distance and the multi-body
motions, rotations and translations.

† This approximation is justified because the rotation matrix has
only linear terms in rotation angle, provided the rotation angle
is small.

C. Eigenfunctions of the 3D electron density maps

We next demonstrate that the properties of manifolds
(as seen in the previous subsection for the 3D atomic-
coordinate structures) significantly change when the
data representation of their underlying states is altered.
Specifically, we investigate how the conformational rela-
tionships between states are changed when representa-
tion by atomic coordinates is transformed into one by
3D electron density maps (EDMs; e.g., Fig. S3). To
this end, we generated the EDMs for each of the 3D
atomic-coordinate structures for all previously defined
state spaces, as is described in our synthetic-generation
protocol (section SM-I). We calculated the pairwise Eu-
clidean distances between these EDMs in ΩEDM ⊂ RV ,
with V the number of voxels in an EDM, and performed
an embedding via the DM framework. Overall, over a
wide range of Gaussian bandwidths, the structure of the
resulting eigenfunctions was very similar to the structure
of eigenfunctions retrieved for the atomic models in the
small Gaussian bandwidth regime. Importantly, these
eigenfunctions were still of the form ψvw (see subsection
B), with subspaces having no significant appearance of
eigenfunction misalignments.

However, there are a few attributes to consider that
distinguish the manifolds obtained for EDMs from those
retrieved for the previous data types. First, the difference
between small and large Gaussian bandwidth regimes
was much less drastic, such that the cosine eigenfunc-
tions appeared in both regimes. For small Gaussian
bandwidth regimes (i.e., a few orders of magnitude be-
low the value determined by the bandwidth estimation
method ε?, as defined in section SM-XI), we found that
the CM2 parabola-housing subspace was buried deeply
in low-ranking eigenvectors (e.g., Ψ8 and higher), with
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FIG. S23: The results of the DM embedding of EDMs (pure signal) from SS2 are shown. Leading eigenfunctions as indexed
by CM1 and CM2 are displayed in the first four rows, followed by their composites. Overall, there is near-perfect alignment of
these eigenfunctions with the initially-obtained eigenvector basis, such that no rotations are required. As a final note, the
pronounced inward curling at the boundaries of certain subspaces (e.g., {Ψ1,Ψ3}) is due to insufficient sampling, as was
identically encountered in our analysis of the embeddings of manifolds obtained from subsequent projections of these EDMs.

numerous CM1 parabolic harmonics occupying the sub-
spaces in between. In addition, eigenvectors with cross
terms Ψ = {ψvw | v, w 6= 0} were found scattered mostly
in mid-range positions (e.g., Ψ12 and higher). Since these
properties were not observed in the embeddings of the
atomic-coordinate structures, we conclude they are a re-
sult of a change in the metric.

In contrast, for larger Gaussian bandwidth regimes
(i.e., near and significantly above ε?), eigenvectors with
cross terms were buried in much deeper subspaces (e.g.,

Ψ34 and higher), with the majority of leading eigenvec-
tors housing content exclusively for either CM1 (w = 0)
or CM2 (v = 0). Thus, the corresponding CM parabo-
las for these ε↑ regimes typically occupied the first two
subspace rows ({Ψ1,Ψi} and {Ψ2,Ψj}), with respective
harmonics positioned in trailing subspaces. These CM
parabolas also had a near-perfect distribution of points,
whereas for the ε↓ regime, the distribution of points had
noticeably less precision to the ideal form. We note that
the embeddings obtained above and below these regimes
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were incoherent in form.
We conclude that the eigenfunctions obtained from the

larger Gaussian bandwidth regime would be preferred for
several reasons. First, the desired CM1 and CM2 parabo-
las occupy leading subspaces and are thus easily identi-
fiable. The paucity of leading cross-term eigenfunctions
is also convenient, since they provide no useful informa-
tion for our analysis, while also obfuscating our search
for desired subspaces. Additionally, the geometric struc-
ture of all subspaces obtained via ε↑ consistently appears
much closer to the ideal form. In Fig. S23, we display
the DM eigenfunctions obtained from this regime for the
20× 20 = 400 EDMs occupying SS2. Subspaces indexed
in the CM1 reference frame (rows one and two) and the
CM2 reference frame (rows three and four) are displayed,
as well as a set of leading composites of these eigenfunc-
tions in the rows that remain.

Importantly, as there was no Gaussian bandwidth
value that could “recover” the preferred Legendre-like
form, it appears that this feature is “lost in translation”
upon transformation from atomic models to EDMs, since
the metric is changed. (To note, the curved geometry
formed by cosines was also in close agreement with the
results of applying PCA on this same dataset). As a main
agent for this distinction, the distance measure pertain-
ing to EDMs is fundamentally different from the one of
the 3D atomic-coordinates. Instead of the 3D coordi-
nate points that stand for the atomic positions of each
structure, the data for each EDM is represented by a 3D
array of values, one at each voxel. A key difference then,
is that in the latter case, the displacement of atoms are
no longer accounted for individually. Instead, every voxel
in the data of one state is now compared to those same
voxel locations in the data structure of another state,
with only changes in the value at each voxel entering the
distance measure.

Hence, while the eigenfunctions are similar, the rela-
tionship between states in these two data types is funda-
mentally different. To demonstrate this change, Fig. S24
shows a comparison of the pairwise distances between
states as calculated for the rectangular latent space,
atomic-coordinate structures, and EDMs. As noted in
the caption, by assessment of the close similarity between
the distances from the latent space and atomic models,
we can infer that these two data types are both confined
to the rectangular manifold ΩR (albeit of different sizes).
As a consequence, we observed that their eigenfunctions
are nearly identical. In contrast, we see that the distances
from the EDMs are starkly different from the rectangular
pattern, where neighboring states are spatially arranged
via an asymptotic-like trend. From these findings, we
must infer the corresponding data live in an altogether
different manifold. Although the explicit geometric form
of ΩEDM is unknown, we have shown that the spectral
properties of the Laplacian in ΩEDM are essentially pre-
served via the mapping from the latent space. While
detailed knowledge of ΩEDM is certainly of interest, it is
inconsequential since our analysis only requires an un-

derstanding of the eigenfunctions of a manifold, and not
necessarily its exact shape.

D. Eigenfunctions of the 2D projections

Since a detailed description of the eigenfunctions of 2D
projections is provided in the main text, we continue this
current narrative only as it pertains to the relationship
of the eigenfunctions of the LBO on ΩPD ⊂ RP with
those from previously-established models (i.e., rectangu-
lar Euclidean latent space, atomic-coordinate structures
and EDMs). For similarities, as was observed for the
EDMs, we found that eigenfunction characteristics could
be broadly classified into two classes via either a small
or large Gaussian bandwidth regime. In either regime,
the eigenfunctions of the PD manifolds were again of the
form ψvw, such that only cosines emerged. The lack of
the Legendre-like form and a similar asymptote-like ap-
pearance of distances between images suggests that the
PD states in ΩPD reside on a manifold similar to ΩEDM.

The overall difference between eigenfunctions obtained
via ε↓ and ε↑ was also much more impactful for PDs
than for the EDMs. In the small Gaussian bandwidth
regime, CM2 subspaces had a severely suboptimal point
distribution, such that, in some PDs, identification of
the CM2 parabola was completely obstructed. These
CM2 subspaces were also buried in trailing eigenvec-
tors, and interspersed among those with cross terms (i.e.,
Ψ = {ψvw | v, w 6= 0}). We also note that the value de-
termined by the bandwidth estimation method (ε?) fell
within this regime, making it a suboptimal choice for
pristine data. In contrast, the large Gaussian bandwidth
regime (i.e., one order of magnitude larger than ε? and
spanning numerous orders of magnitude above it) was
superior in every sense, with CM1 and CM2 eigenfunc-
tions having ideal point distributions and corresponding
subspaces occupying leading eigenvectors. As well, the
cross-term eigenfunctions were present only in far trail-
ing eigenvectors (e.g., Ψ31 and higher), and would not
be obstructive during the analysis. Briefly, we note that
upon introduction of noise (SNR = 0.1) and duplicate
states (τ = 5), ε? was instead an optimal choice (along
with numerous orders of magnitude above it), while any-
thing below this range was completely inadequate.

For either Gaussian bandwidth regime, we found that
the eigenfunction misalignments can emerge—and with
varying magnitude—depending on the projection direc-
tion. Since previously we have shown that no such
property is apparent in the manifold embeddings gen-
erated from the 3D EDMs from which these PDs orig-
inate, it is clear that the emergence of these eigenfunc-
tion misalignments is tied to PD disparity. We hypoth-
esize that, as different 2D projections are taken of the
EDMs via p : ΩEDM 7→ ΩPD, the geometry of ΩEDM can
become contorted due to the change of pairwise inter-
atomic distances resulting from foreshortening in projec-
tion (Fig. S25), such that the apparent span of one CM
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FIG. S24: The first row of the distance matrix D is plotted for the rectangular Euclidean space [A], the 3D atomic-coordinate
structures in SS2 [B], and the EDMs in SS2 [C]. Given our ordering of states, the first row D1,k corresponds to the pairwise
distance calculated between state 01_01 and all 400 states. For [A], which was calculated for a rectangular domain
ΩR ∈ [0, 1.1]× [0, 1] ⊂ R2, one can identify the distance of the first state (x1 = 0, y1 = 0) to all other coordinates, such that
the red line depicts the base of the rectangle (with maximum distance D{(x1, y1), (x20 = 1.1, y20 = 0)} = 1.1), and the blue
line depicts the rectangle’s left-hand side boundary (with maximum distance D{(x1, y1), (x381 = 0, y381 = 1)} = 1). In [B], a
similar rectangular pattern arises for the RMSD values calculated between atomic models. The pattern in [C], however, is
starkly different from [A] and [B], such that no rectangular (or rectangle-like) domain could be drawn to reproduce this trend.

FIG. S25: Here we provide intuition for the emergence of foreshortened distances due to taking 2D projections of 3D EDMs.
Two orthographic views of 3D models in the directions of two PDs are shown in [A] and [B], each composed of 20 overlaid 3D
volumes from CM2 (i.e., one degree of freedom). The 2D distances (in pixels) were measured between the peripheral ends of
each consecutive states’ rotated subunit (as seen in the red and blue encircled regions). After conducting three sets of 2D
distance measurements on each region in image [A] and [B] independently, the mean distances were plotted with error bars
representing standard deviation, followed by linear regression [C]. As can be seen, although the distances between states in
the object’s 3D form is constant, when projections are taken, these distances can strongly vary based on the current 2D view.
While the Euclidean distance matrix calculated in the DM framework is less intuitive and records these changes on a
pixel-by-pixel basis for the entire image, we anticipate analogous relationships to emerge there based on PD and CM.

to another depends on PD.
Thus, throughout these sections, we have demon-

strated how the embeddings of the manifolds containing
the same conformational information change depending
on how the data is represented. Nevertheless, we were
able to closely approximate the observed ΩPD eigenfunc-
tions when allowing for eigenbasis rotations of the form

Ψi = cos(θ)cos(vπx) + sin(θ)cos(wπy) = Aψv +Bψw

Using this expression, we generate graphs in Figure S26
which are able to analytically reproduce the heuristically-

derived subplots in Figure 3 and Figure 4. Apart from
a few minor discrepancies, we observed an outstanding
agreement between our analytical functions and the find-
ings from our heuristic analysis. The discrepancies that
do emerge can be understood as additional, small-scale
perturbations which are currently unaccounted for in our
general eigenfunction expression.
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FIG. S26: Comparison of analytically-generated functions with the eigenfunctions previously obtained for PD1 (Fig. 3 and
Fig. 4). For each pair of subplots, values for θ were approximated by eye. Our approximations share a remarkable similarity
with earlier heuristic results, and are able to account for geometric minutiae previously unaccounted for, as well as
larger-scale rotations seen in the composite of eigenfunctions. Discrepancies can be seen in the slightly tilted appearance of
parabolas in Ψ3 and Ψ5 of Fig. 3, as well as the clumping of points as observed in the CM2 reference frame of Ψ6.
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SM-XV. BOUNDARY CONDITIONS OF THE LBO

Here we lay out a strategy for dealing with molecular ma-
chines that exhibit each of their domain motions along
an independent and mutually unrestricted sequence of
quasi-continuous states. The set of all n-wise combina-
tions of these bounded intervals (one for each confor-
mational motion) produces an n-dimensional shape with
a rectangular boundary. In section SM-XIV, we have
shown that the corresponding Laplacian eigenfunctions
are well defined. However, in general, analytically solv-
ing the Laplacian for any arbitrary boundary is impossi-
ble. Eigenfunctions can change drastically depending on
the boundary, and are analytically only known for cer-
tain elementary shapes, such as rectangles, discs, ellipses
and special triangles28,31. On the other hand, geometric
machine learning approaches can obtain solutions numer-
ically, in principle for any boundary. However, such geo-
metric machine learning methods still require the bound-
ary to be known a priori. For systems with unknown
boundaries, the problem is intractable.

As the set of all possible molecular machines is unfath-
omably complex, it is unlikely that one single algorithm
could ever be so versatile as to anticipate every possible
instance. Instead, we are interested in casting a wide
enough net to capture the dynamics of a large portion
of these systems, which we surmise operate within rect-
angular boundaries of an n-dimensional latent space of
multi-body motions. However, one can still imagine all
sorts of other situations, such as a system where one do-
main blocks—via steric hindrance—another domain from
its full range of motion in a specific region of the state
space (Fig. S27-B). Importantly, our requirement of ad-
equate coverage (as detailed in Discussion) excludes the
case of obtaining poorly sampled data from a rectangu-
lar domain, which would allow any number of arbitrary
shapes to emerge. This exclusion also holds for state
spaces with “holes” (i.e., interior boundaries)28, where
the occurrence of certain states is forbidden due to ener-
getic restraints. To better understand the effects of these
boundary challenges, we have created a 2D state space
with an octagonal domain (noting the Laplacian eigen-
functions of the octagon is an analytically unsolved prob-
lem), which was achieved by eliminating states at the four
corners of our standard rectangular domain (Fig. S27-A).
To circumvent the occurrence of eigenfunction misalign-
ments due to PD disparity, which may complicate the
interpretation of the boundary influence, we embed the
3D electron density maps instead of 2D projections.

The corresponding manifold embedding obtained from
this octagonal state space is shown in Fig. S27-C, which
features a number of deviations from the canonical rect-
angular eigenbasis (Fig. S23). Manually, we attempt to
find a transformation from the octagonally-derived eigen-
basis (Fig. S27-C) to the rectangular form (Fig. S23) by
intuiting a collection of suitable rotation operators. In-
deed, we are able to show that such a transformation is
possible, up to some level of uncertainty (Fig. S27-D).

Thus, it is not that the eigenfunctions are dramatically
changed by the imposed boundaries, but, instead, that
the eigenvectors can now contain multiple cosine terms.
We note that both the indices and number of rotation
operators required for this transformation deviated from
our findings on eigenfunction realignment performed on
rectangular state spaces (see section SM-XVI), with the
collection of decisions required now more complex. Thus
we believe this instance only further motivates the need
for a future comprehensive method for estimating the
preferred eigenbasis rotations. Given our own obser-
vations, a maximum-likelihood approach may be better
suited for these demands, with such a study deserving of
the scale delivered for other ManifoldEM subproblems,
such as Belief Propagation32.
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FIG. S27: Analysis of the eigenfunctions [C] associated with the octagonal state space [A] of EDMs. The initial 20× 20
rectangular state space is displayed in [A], where red boxes illustrate states that were removed to form an octagonal grid. The
schematic in [B] provides some context for the possibility of a non-rectangular state space, which can be envisioned as a
top-down view of (1) a large domain that opens and closes, and (2) a small domain that translates left and right. Naturally,
while the larger domain is in a closed or half-closed state, the smaller domain is impeded from accessing a subset of its
possible states, and vice versa. The eigenbasis obtained after application of a set of high-dimensional rotations (of dimension
d = 15) is shown in [D]. The required operators were estimated by hand, and included several large and small transformations:
{R5,6(40◦), R2,6(−15◦), R2,5(3◦), R2,9(4◦), R6,9(20◦), R6,12(−25◦), R2,11(−6◦), R9,11(25◦), R9,15(5◦), R6,11(3◦)}. We note these
calculations are for completeness, and not a minimal set for a desired subspace. Still, we were unable to perfectly decouple the
{Ψ3,Ψ6} subspace. As Ψ3 appeared well behaved in the CM2 reference frame, it is possible that either the Ψ6 eigenfunction
was fundamentally altered due to the new boundaries, or our choice of an earlier operator trapped us in a suboptimal solution.
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SM-XVI. EIGENFUNCTION REALIGNMENT

In this section, we demonstrate application of our
eigenfunction-rotation algorithm and present the oper-
ators Rij needed to counter-rotate each CM subspace for
our final analysis. In addition, we provide here intuition
for the aforementioned elimination procedure, which we
apply to remove parabolic harmonics. These strategies
are formulated by inductive reasoning based on patterns
observed across hundreds of ΩPD embeddings.

We start by identifying the eigenvector indices cor-
responding to the first CM subspace. Since a macro-
molecule’s most prominent conformational signal as seen
from the current viewing angle must always be the lead-
ing factor in the embedding of a PD manifold, we expect
the leading CM subspace to appear in the set {Ψ1,Ψi},
and use a least-square fitting strategy to discover the
second eigenvector ΨA (see movie M7). Once this first
parabola-housing subspace is identified, we can elimi-
nate all subspaces {ΨA,Ψi} as housing harmonic infor-
mation corresponding to this leading CM at {Ψ1,ΨA}.
We can additionally eliminate {ΨB ,ΨA} in the next non-
harmonic eigenvector row as a candidate for the location
of the orthogonal CM parabola, which is easily under-
stood via examination of movie M6. Subsequently, once
the second CM subspace is identified by similar least-
square measures (e.g., {ΨB ,ΨC} if C 6= A), the pre-
vious elimination procedure can be repeated to identify
the location of this CM’s corresponding harmonic span-
ning {ΨC ,Ψi}, and so on, as is afforded by the geometric
fidelity to the LBO (and thus ability for parabolic fit-
ting) of these higher-order subspaces. As it is currently
designed, this elimination procedure is applied only to en-
sure removal of the lowest-order harmonics19, such that
the leading set of potential CMs discovered through this
approach should always be unique.

Eigenvector indices can be additionally used to narrow
down the rotational operators Rij required to adequately
rotate each 2D subspace. Specifically, for two degrees
of freedom, all pairwise combinations of the eigenvector
indices corresponding to the first and second parabola-
housing subspace (excluding parabolic harmonics) deter-
mine the set of required Rij operators for n = 2. As
a concrete example, we consider a 6-dimensional case
where the CM1 parabola is found in the {Ψ1,Ψ3} sub-
space, the CM2 parabola in the {Ψ2,Ψ5} subspace, and
the first CM1 parabolic harmonic in the {Ψ3,Ψ6} sub-
space. Then the 15 available rotation operators can be
narrowed down to just the use of some combination of
{R1,2|R1,5|R2,3|R3,5}, and applied in order of highest to
lowest eigenvector significance while measuring minima
via the aforementioned histogram routine. To note, while
it is true that finite rotations about different axes do
not commute33, we found only minor deviations in the
final orientation of each eigenbasis, given different per-
mutations in the sequence of these four operators. Once
the location of these parabola-housing subspaces are es-
tablished, harmonics can alternatively be discarded if

duplicate Rij indices emerge under this scheme. The
emergence of duplicate indices can be understood in the
current example when taking pairwise combinations of
the leading parabola-housing subspace with the {Ψ3,Ψ6}
harmonic, which will incur the trivial R3,3 operator.

MOV. M5: Effect of applying a 4D orthogonal rotation to
the 4D subspace (shown here using four projections of that
subspace) obtained from PD2 (in SS2 with τ = 10 and SNR
= 0.1). The six rotation matrices required for the rotation of
a 4D subspace are shown on the right, where the number of
matrices for a d-dimensional subspace scales via d(d− 1)/2.
(Note that the minimum dimensionality of the rotation
matrix used must match the dimensionality of the subspace
required to encompass all parabolic modes present in the
embedding). As can be seen, by only applying rotation
operator R2,3 with 0.5 radians (28.65°), both CM1 and CM2

parabolic modes are corrected (preserving all distances
between points) such that they reside completely in the
plane of {PC1,PC3} and {PC2,PC4}, respectively.
https://www.dropbox.com/s/c9b6vcjeffwziqp/M5_EigRot_
4D.mp4?dl=0

As a final note for this section, there exists a rare occur-
rence that must be accounted for when the initial eigen-
basis of the ΩPD embedding is severely misaligned from
the preferred coordinate system. In this event, we have
observed that CM subspaces cannot be initially located
by the presence of favorable R2 values generated from
least-squares fits. We encountered this problem for one
manifold of the 504 analyzed (0.2%) across both data-
type II (using three great circles) and data-type III (us-
ing one great circle). This error is easily recognized by
the presence of a significantly low R2 value (less than
0.1) for each 2D subspace of a given PD manifold. In
such an event, we suggest rotating the eigenbasis by 45°
using the R1,2 operator and recalculating least-squares
fits. As additional cases emerge, it is likely that a more
comprehensive strategy may be required.

https://www.dropbox.com/s/c9b6vcjeffwziqp/M5_EigRot_4D.mp4?dl=0
https://www.dropbox.com/s/c9b6vcjeffwziqp/M5_EigRot_4D.mp4?dl=0
https://www.dropbox.com/s/c9b6vcjeffwziqp/M5_EigRot_4D.mp4?dl=0
https://www.dropbox.com/s/c9b6vcjeffwziqp/M5_EigRot_4D.mp4?dl=0


Supplementary Material 30

MOV. M6: A movie displaying the 2D histogram approach
for finding optimal angles and corresponding parabolic
modes. Specifically, the effect of an incremental 4D rotation
operator R2,3 on each 2D subspace is shown. During these
rotations, each 2D subspace exhibits a unique profile which
can be characterized by the number of nonzero bins in the
corresponding 2D histogram as a function of angle. Note the
appearance of specific patterns that emerge between these
2D subspaces as rotations are performed, which we leverage
in our algorithm to procedurally eliminate subspaces from
potential misuse. https://www.dropbox.com/s/
ekh44n66x5j7sz5/M6_EigRot_Hist.mp4?dl=0

MOV. M7: An example PD from datatype II is chosen to
demonstrate the inner workings of our eigenfunction
realignment algorithm. Here, a d = 5 dimensional subspace
is first isolated, with each 2D subspace therein assigned an
R2-value based on least-square fits. Given presence of
adequate fits, the parabola-housing subspace in each
eigenvector row is determined via the best R2 value, with
the corresponding eigenvector indices used to procure the
four rotational operators (of 10, for d = 5) required to align
each point cloud with the plane of its subspace. We next
demonstrate the generation of 2D histograms as these
operators are exercised to determine the optimal angles, as
previously detailed in Movie M6. As can be visually
assessed, slight inaccuracies may emerge during the
histogram optimization (typically no more than 5°), but
prove insignificant for downstream procedures.
https://www.dropbox.com/s/u6qqrc6bmm5881t/M7_EigRot_
Rij.mp4?dl=0

https://www.dropbox.com/s/ekh44n66x5j7sz5/M6_EigRot_Hist.mp4?dl=0
https://www.dropbox.com/s/ekh44n66x5j7sz5/M6_EigRot_Hist.mp4?dl=0
https://www.dropbox.com/s/ekh44n66x5j7sz5/M6_EigRot_Hist.mp4?dl=0
https://www.dropbox.com/s/ekh44n66x5j7sz5/M6_EigRot_Hist.mp4?dl=0
https://www.dropbox.com/s/u6qqrc6bmm5881t/M7_EigRot_Rij.mp4?dl=0
https://www.dropbox.com/s/u6qqrc6bmm5881t/M7_EigRot_Rij.mp4?dl=0
https://www.dropbox.com/s/u6qqrc6bmm5881t/M7_EigRot_Rij.mp4?dl=0
https://www.dropbox.com/s/u6qqrc6bmm5881t/M7_EigRot_Rij.mp4?dl=0
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FIG. S28: Frequency of Ri,j angles (d = 6) required to counter-rotate each CM1 subspace within the 126 PDs along the S2

trajectory spanning half of one great circle. A total of 15 subplots are displayed corresponding to the d(d− 1)/2 rotation
operators necessary for this lower-dimension analysis. As can be seen, the magnitude of rotations required for a significant
portion of PDs was substantial. To note, angular trends for each operator are highly subject to the choices of S2 trajectory
and CM.
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SM-XVII. RECOMBINATION OF CONFORMATIONAL
STATES

The following figure provides intuition for our method of
generating multidimensional free-energy landscapes and
corresponding 3D movies using the ESPER intersection
of image-indices within each PD manifold. For this
schematic, we have simplified the problem from that of
accounting for a parabolic surface (as observed through-
out this study) to a plane; however, the following intu-
ition remains the same in either case.

FIG. S29: A schematic to provide intuition for our
intersection of image-indices approach, which simplifies the
complex parabolic features in our observed PD embeddings
into linear ones, on a plane. Let the red point near the
center of the plane represent an image with image index pi,
such that pi belongs to both CM1{12} and CM2{13}, and
thus pi ∈ CM1{12} ∩ CM2{13}. This point, along with all
others in the intersection CM1{12} ∩ CM2{13}, is used to
define an occupancy and reconstruct a 3D density map for
the respective state 12_13.

Just like the plane in Fig. S29-A, PD images (repre-
sented by points) are organized along n orthogonal de-
grees of freedom (CMs) on a higher-dimensional hyper-
surface. For our needs, this hypersurface can be approx-
imated as a parabolic surface. Given the aforementioned
uncertainty and difficulty in identifying and mapping this
surface directly, we can instead refer to its set of n or-
thogonal projections (e.g., Fig. S29-B and Fig. S29-C),
which can be found and mapped with less difficulty. In
the case of the plane—as in the case of our simplified
illustration—these subspaces are 1D, while for ΩPD em-
bedding, a 2D subspace is required to adequately capture
each parabolic component. Recall that we identify these
subspaces after performing eigenvector rotations to align
the parabolic surface, such that only the CM parabola is
visible in each of the respective 2D subspaces. Once lo-
cated, we straighten each CM trajectory in each of these
lower-dimensional projections into a 1D trajectory, such
that the parabola is transformed into rectilinear form.
Next, we partition the points separately into β contigu-
ous bins (here, β = 20), and collect the set of image
indices falling into each bin. Note that the size of the
bin effectively defines the precision to which we can lo-
cate each point on the plane, and determines the range
of images falling within each state for our final outputs.

As a result, we are left with nβ sets of image indices

combined across each set of CM coordinates for each PD.
For ease of explanation in the following notation, assume
n = 2. Next, we construct an empty β × β (i.e., βn) ar-
ray P and fill each element Px,y with the set of all image
indices in the intersection CM1{x} ∩ CM2{y}, where x
and y are bins from CM1 and CM2, respectively. Since
manifolds from each PD were obtained independently, we
must also correct for sense (the directionality of the CM
coordinates) as we accumulate indices in P . At the end
of this procedure, we sum the total number of entries in
each Px,y to form a β×β occupancy map (which can then
be converted into a free-energy landscape via the Boltz-
mann relation). We additionally use the indices of images
within each Px,y to reconstruct a 3D density map for the
set of corresponding images; in this example, producing
400 3D density maps in total. Naturally, this construc-
tion can be easily extended to three or more degrees of
freedom.

Thus, given only a set of CM subspaces—each a
parabolic trajectory defining an orthogonal degree of
freedom—and with knowledge of the higher-dimensional
relationship between them (i.e., the parabolic surface, as
determined throughout our heuristic analysis), we can re-
construct that joint geometrical relationship using only
the intersection of image indices obtained in all pairwise
combinations of bins from straightened CM coordinates.
In effect, this procedure only requires that we collect the
indices of images, without the need to integrate them into
1D occupancy maps. This is in contrast to the previous
ManifoldEM methodology employing NLSA, which dis-
cards the original image indices. This action carries a
price, and must be reversed by performing a lengthy to-
mographic reconstruction using the 1D occupancy maps
to obtain the 2D distribution (for more information on
the NLSA strategy, see the following section SM-XVIII).
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SM-XVIII. OVERVIEW OF NLSA

Nonlinear Laplacian spectral analysis34 (NLSA) is pri-
marily used for noise reduction during the extraction of
the conformational signal contained in each PD. NLSA
is applied independently on each member of a leading
set of ΩPD eigenvectors in order to assess the “meaning”
of each in terms of housing potential CMs of interest.
For each of these eigenvectors, NLSA is performed as fol-
lows. First, the raw images are concatenated along a
chosen eigenvector to produce so-called “supervectors”35.
These supervectors are then embedded to form a new
set of eigenvectors in a different space. This results to
high accuracy in a 1-dimensional manifold, with known
eigenfunctions cos(kπτ) parameterized35 by a conforma-
tional parameter τ (separate from the use of τ in our
analysis). This enables the estimation of a density of
points as a function of τ together with an ordered se-
quence of noise-reduced (i.e., interpolated, via the super-
vectors) 2D images. These 2D images can be arranged to
form a 2D NLSA movie, designed to represent the confor-
mational signal corresponding to the eigenvector chosen
from the initially-embedded PD manifold. Once a set of
2D NLSA movies have been constructed along each of
the leading ΩPD eigenvectors independently, supervised
identification of “meaningful” CM information is next re-
quired.

When only one degree of freedom is desired (or avail-
able), the 2D movies corresponding to the same CM con-
tent in different PD manifolds can be further compiled
across S2 to reconstruct 3D density maps and thus a
3D movie representing the CM. The NLSA procedure is
more complicated when two (or more) degrees of freedom
are desired. After supervised identification of two CMs,
their respective eigenvectors for the current ΩPD are used
to isolate a 2D subspace therein. On this {CM1,CM2}
subspace, NLSA is performed independently along the di-
rections of (typically) 180 uniformly-spaced radial lines
in the range (0 ≤ θ ≤ π). This yields a collection of
point densities (i.e., 1D occupancy maps) n(τ, θ) for each
θ. The collection of these 1D maps for all θ constitutes
the 2D Radon transform of a yet unknown 2D density
map (i.e., the desired 2D occupancy map). An inverse
Radon transform is then applied to reconstruct the 2D
density map. In addition, NLSA also retrieves the noise-
reduced images at each point in this map. To note, one
of the rationales in the way NLSA-based retrieval of im-
ages is organized is that it normalizes the initially un-
known rates of change in different CM directions35. As
in the 1D case, this procedure must next be performed for
the eigenvector pairs corresponding to {CM1,CM2} in all
other embeddings of ΩPD, from which noise-reduced 3D
density maps can be reconstructed to form 3D movies of
concerted conformational motions.

SM-XIX. COMPARISON OF RESULTS FROM ESPER
AND NLSA

Here we compare the outputs of ESPER and NLSA for a
few example PDs from our final analysis dataset (126
PDs, SNR, CTF and nonuniform occupancy map, as
previously detailed), with these PDs selected based on
the properties of both their visual appearance and re-
spective embedded geometries. Importantly, the same
preliminary steps were performed for both frameworks
(i.e., generation of identical manifolds and corresponding
embeddings) before a branch in workflows. Also recall
that ESPER includes the use of our eigenfunction re-
alignment methodology on these manifold embeddings,
whereas ManifoldEM with NLSA currently does not.

MOV. M8: For our comparison of ESPER and NLSA, three
example PDs were chosen from our final analysis dataset for
direct comparison of their 2D movies and corresponding
occupancy maps. In the first segment of the movie M8, PD2

represents the class of extremely well-behaved manifolds:
near-perfect eigenfunction pre-alignment and irrelevant
inward curling of either CM1 or CM2 subspaces. Next, PD33

is a representative from the class of manifolds with
appreciably unaligned eigenfunctions from the ideal
eigenbasis, with the subspace of CM2 here requiring a larger
counter-rotation than CM1. Finally, PD49 required a
minimal d-dimensional rotation (much like PD2), but
exhibited significant inward curling at the boundaries of its
subspaces. The last segment of movie M8 demonstrates the
final 2D movies (one per eigenfunction) output by NLSA for
PD33 and PD49. https://www.dropbox.com/s/
qvpwsyqq6zc95qg/M8_Comparison_NLSA.mp4?dl=0

As can be seen in movie M8, for the most well-behaved
PD manifold, PD2, there is general visual agreement in
the 2D movies obtained from NLSA and ESPER for
CM1 and CM2. However, there are noticeable discrep-
ancies in the outputs between the results from these two
techniques. Immediately apparent is the difference in
quality of the domains under motion corresponding to
the given CM. For ESPER, these domains are highly re-
solved across all frames produced, while for NLSA these
regions are much less resolved and noticeably smeared
out. Second, while the visual differences between frames
of ESPER appear to evolve at an even pace, differences

https://www.dropbox.com/s/qvpwsyqq6zc95qg/M8_Comparison_NLSA.mp4?dl=0
https://www.dropbox.com/s/qvpwsyqq6zc95qg/M8_Comparison_NLSA.mp4?dl=0
https://www.dropbox.com/s/qvpwsyqq6zc95qg/M8_Comparison_NLSA.mp4?dl=0
https://www.dropbox.com/s/qvpwsyqq6zc95qg/M8_Comparison_NLSA.mp4?dl=0
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in frames appear less emphasized near the beginning and
end of the NLSA movies, as if the CM movies were decel-
erating near these regions. In addition, the NLSA occu-
pancies share little resemblance to our ground truth, with
accentuated errors near the boundaries. Similar bound-
ary problems exist but are significantly less present for
ESPER occupancy maps, as each map shows reasonable
agreement with ground truth (i.e., bimodal for CM1 and
unimodal for CM2, as expected via Fig. S13).

The NLSA outputs for CM1 in PD33 follow similar
trends to those described for PD2, with the exception
that the overall range of motion for this CM is noticeably
reduced compared to outputs from ESPER. For CM2,
matters are much worse. While our procedure using ES-
PER correctly charted a rotated, properly-aligned set of
eigenfunctions, ManifoldEM employing NLSA used the
existing manifold embedding without applying the essen-
tial eigenfunction realignment. As a result, the 2D movie
produced by NLSA having closest resemblance to CM2

(i.e., Ψ4) demonstrated a physically-impossible sequence
of motions: the splitting of the CM2 domain into two
separate domains. At the end of movie M8, the NLSA
2D movies obtained for the leading four eigenfunctions
are shown for comparison. Here, both (1) a physically-
impossible splitting of the CM1 domain, and (2) a sub-
dued CM2 motion can be seen in the 2D movies obtained
for both Ψ2 and Ψ3.

In the third scene of movie M8, the NLSA outputs
of PD49 can be described most similarly to those ob-
tained in PD2, and aside from flaws previously listed,
are in general visual agreement with ESPER outputs.
Again, the last segment of movie M8 showcases the al-
ternative NLSA outputs obtained from Ψ3 and Ψ4, for
which physically-impossible conformational information
is apparent corresponding to CM1 and CM2 domains, re-
spectively. Note that while NLSA and ESPER have been
provided the exact same data—even up to generation of
identical manifold embeddings—only ESPER is able to
fully leverage the geometric structure present to consis-
tently recapitulate ground-truth conformational motions
and occupancies from a variety of PD manifolds. Further,
while ESPER offers strategies to procedurally avoid in-
troduction of nonsensical contextual output, NLSA can
generate 2D movies with a wide range of defects18, with
each having the potential of appearing as a likely CM
candidate to the naive eye.

Finally, we note the total computation time for
performing these two techniques on the same CM-
eigenvector (Ψ1) from the same PD manifold (PD2),
with final output a single 2D movie (as seen in movie
M8). The ESPER approach required approximately one
minute for finding the optimal d-dimensional rotations
and CM subspaces for this ΩPD, followed by approxi-
mately two minutes to perform subspace partitioning on
the leading CM parabola. Meanwhile, the NLSA ap-
proach, which does not use our eigenfunction-rotation
technique, took 4 hours and 37 minutes to furnish a 2D
movie. The total computation time for NLSA was thus

over 90 times longer than ESPER, with both methods
having been run using a single-processor on the same
workstation (3.8 GHz 8-Core Intel Core i7; 8 GB 2667
MHz DDR4). Although not investigated further for this
study, we additionally note that in the current Manifol-
dEM framework18, it is required that this time-expensive
NLSA computation is repeated in its entirety for every
ΩPD eigenvector chosen during final compilation of the
free-energy landscape. Meanwhile, using our intersec-
tion of image-indices approach, the ESPER algorithm
compiles all PD-eigenfunction content and generates free-
energy landscapes within minutes. Recall that these high
computational demands were rationalized for NLSA as a
way to handle the unknown manifold structures, noise-
reduce images and normalize unknown rates of change.
Meanwhile, as our heuristic analysis directly informed
us of anticipated manifold characteristics and spectral
structure, we were able to design ESPER to circumvent
these previous unknowns, and perform the necessary op-
erations required to accurately retrieve high-resolution
images and corresponding occupancy map of all CM
states. The results of our analysis show that ESPER
produced appreciably more accurate outputs than the
previous technique in a fraction of the time.
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SM-XX. STRUCTURAL VALIDATION OF ESPER
OUTPUTS

In the following we provide a validation for the fidelity of
the ESPER outputs as they relate to the ground-truth
electron density maps obtained from PDB-formatted
atomic-coordinate structures. (Recall that, following our
synthetic-generation protocol, these EDMs are then pro-
jected to form images—and these images then duplicated
via multiple occupancy assignments and modified by
CTF and noise—before being processed via the ESPER
framework). Specifically for our validation, we generated
a Fourier Shell Correlation (FSC) curve7 for the ground-
truth simulated map against the corresponding ESPER
recovered map. As seen in Fig. S30 for state 05_10, we
found favorable global agreement between maps up to a
resolution near 3 Å (i.e., the value used to generate each
ground-truth EDM).

FIG. S30: FSC curve comparing the state 05_10 input
(ground-truth) and output (ESPER) maps. Specifically, the
FSC measures the normalized cross-correlation coefficient
between the two maps as measured over a series of shells in
Fourier space. As one proceeds along the x-axis from the left
(representing the center of the FT) to the right, increasingly
larger shells are compared in Fourier space, such that the
largest shells (far right) correspond to the highest resolution
features. The FSC curve thus provides a global measure of
how well one 3D density map matches the other.

For molecules that exhibit domain motions, the global
resolution is no longer a good indicator of how well-
resolved these regions are in the reconstructed EDM.
Thus, a complementary local validation was done by cal-
culating the Q-scores36 for the same example EDM (state
05_10) output from ESPER; with the use of Q-scores
serving as a local indicator of how well our final 3D den-
sity maps recover the ground-truth atomic information.
The results of this analysis are shown in Fig. S31.

For these statistics, the mean Q-score for the (1) back-
bone, (2) side chains, and (3) residues was 0.784, 0.768
and 0.778, with standard deviation 0.042, 0.042 and
0.039, respectively. Almost all Q-scores obtained were
well above the expected Q-score value (0.5862), which is

calculated36 based on correlations to the reported res-
olutions of maps in the EMDB. On average, these Q-
scores were approximately 1.3 times that of the expected
value. We note that exceeding these expectations is
anticipated, since our study was initiated with pristine
structural information (i.e., atomic models). Outliers
were found predominantly in the periphery of the do-
main corresponding to CM2 and included side chains
(minimum Q-score: 0.401) and three residues (minimum
Q-score: 0.377). While the FSC provides an indicator
for the global agreement between two maps, we believe
the Q-score is more appropriate for interpretation of our
outputs, especially given the design of our study; i.e., a
synthetic-generation protocol from ground-truth atomic
coordinates. Similarly favorable structural fidelity was
found for the other outputs of ESPER in relation to their
corresponding ground-truth atomic representations.
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FIG. S31: Q-scores for protein backbone, side chains and residues calculated using ESPER output map 05_10 with
corresponding ground-truth atomic-coordinate structure. Q-scores were ascertained using the MapQ37 plugin for Chimera6.
As can be seen, the range of residues corresponding to each conformational motion (CM1 and CM2) are demarcated on chain
A and B, respectively. Empty Q-scores correspond to those residue indices missing in the initial crystal structure (PDB
2CG9), whether due to insufficient resolution or electron density in the preceding study. The expected Q-score represents the
average Q-score at a resolution of 3 Å, and is calculated via MapQ based on the reported resolutions of 3D density maps in
the Electron Microscopy Data Bank (EMDB).
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