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ABSTRACT: Free-energy landscapes are a powerful tool for
analyzing dynamical processes - capable of providing a complete
mapping of a system’s configurations in state space while
articulating its energetics topologically in the form of sprawling
hills and valleys. Within this mapping, the path of least action can
be derived - representing the most probable sequence of transitions
taken between any two states in the landscape. In this article,
POLARIS (Path of Least Action Recursive Survey) is presented as
a dynamic, global approach that efficiently automates the discovery
of the least action path on previously determined 2D energy
landscapes. Important built-in features of this program include
plotting of landscape trajectories and transition state theory
diagrams, generation of text files with least action coordinates
and respective energies, and bifurcation analysis tools that provide downstream versatility for comparing most probable paths and
reaction rates.

■ INTRODUCTION

The construction and exploration of energy landscapes is
essential for understanding the complex dynamics of molecular
systems.1 Since the initial underpinnings of potential energy
surfaces over a century ago,2 many attempts have been made to
articulate its required properties. Fundamentally, the free-
energy landscape is understood to be an intrinsic property of a
given molecular system, independent of the experimental
method used to obtain it.3 As these systems dynamically
operate between distinct conformational states over many time
and length scales, any mapping to the corresponding energy
landscape must also be multidimensional and hierarchical in
nature.4 Within this landscape, the sprawling layout of energy
hills and valleys characterizes the system’s navigational
probabilities - with deep wells representing distinct conforma-
tional states and peaks or ridges acting to constrain the
transitions between them. Further, since specific sequences of
conformations give rise to biomolecular function, functional
dynamics should be accounted for within this descriptive
topology.5

For decades, a variety of methods have existed to analyze
energy landscapes,6 including global optimization algorithms,7

transition state search schemes,8,9 and coordinate trans-
formations,10 to name a few. During that time, many
landscapes were successfully modeled for protein folding and
related dynamics,11−13 while applications to larger, more
complex macromolecular assemblies remained in their
infancy.4 In recent years, however, technological advances in
single-particle cryo-EM14−17 have opened the door for

constructing the free-energy landscape across a number of
these previously incomprehensible systems.18−21

Cryo-EM allows macromolecules to be experimentally
visualized en masse via electron microscopy after being rapidly
frozen in vitreous ice (quenching) at a rate assumed to be
faster than the overall reconfiguration time of the system. As a
result, the ensemble of frozen molecules closely approximates
the Boltzmann distribution of states of the system immediately
prior to freezing.3 Virtually all projection directions of the
particle are obtained for each conformation in its state space.
These data are then analyzed by ManifoldEM - a new
computational technique employing manifold embedding19−21

to construct a lower-dimensional state space of the system
from its experimental sightings. The number of particles found
in each state is then compared to the occupancy of the most
populated conformation, with this ratio converted into
standard free-energy differences via the Boltzmann factor to
create the free-energy landscape.18 In this way, the landscape’s
minimum-energy wells represent the system’s most highly
preferred conformations as witnessed during the experiment.
Through this method, the potential now exists for creating the
conformational free-energy landscape for any molecular
machine. With this powerful tool, new methods must be
devised to extract valuable information from these exper-
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imentally determined landscapes for further biological
elucidation.
Existing on a scale where thermal and deterministic forces

act on equal footing, the macromolecules are constantly
buffeted by the random motions of nearby solvent molecules as
they compete to internally perform the sequence of motions
required to operate. As a result, transitions between distinct
states occur via a series of thermally driven steps. This diffusive
process can occur through a multitude of structural pathways
in the energy landscape, ultimately creating an ensemble of
transitory routes between any two configurations.5 Each of
these available pathways represents a unique sequence of
conformational events - with the probability for a transition to
take one such pathway dependent on both the surrounding
highest-energy peaks4 and the total integrated energy along
that path’s diverse range of intermediate states.
Historically, such notions stem from Maupertuis’ principle of

least action,22 which defined the natural tendency of a system
to choose the path among all available paths connecting two
specified points that ultimately minimizes its action.
Maupertuis worked closely with Euler, who continued to
advance this concept as a “minimization of effort”23 - an
expression corresponding to our present-day understanding of
potential energy. From this, the path of least action can be
defined and computationally generated for the energy
landscape - a path representing the most probable sequence
of unique conformational changes taken by the system to
navigate between two distinct configurations.
In this study we assume that the free-energy landscape is

already given in the form of a two-dimensional array,
determined from cryo-EM data using the method outlined
above. Associated with each array point is a set of reaction
coordinates, the value of the free energy, and a “local” 3D
density map representing the local conformation of the
molecule. POLARIS aims to find the path of least action
between any two points within the energy landscape, using
only information contained within it (i.e., the energy of each
state, with all states spatially organized along the reaction
coordinates).
Many general techniques already exist to algorithmically

solve pathfinding problems - seeking to identify the best path
between any two points as defined by some overhead metric
(e.g., shortest or fastest route). In the majority of these, graph
theory plays a prominent role, with hallmark algorithms such
as Dijkstra’s24 and many variants25−27 proven successful.
However, these methods rely on the assumption that the
kernel being used (representing the distance between any two
points) is deterministically correct. By calculating this kernel
across every combination of points, a weighted graph is
produced, where a value (weight) is given to every edge
connecting the set of vertices in the graph. A collection of
decisions is subsequently made to find the collection of
intermediate vertices such that the sum of their constituent
edge weights is minimized.
However, in situations where the value of each edge weight

is not conveniently predefined (as is the case in energy
landscapes), uncertainty arises from the existence of a
theoretically infinite number of kernel functions one could
use to define such a weighting.28 For example, Graph Spectral
Image Processing29 aims to construct a graph connecting pixels
with weights via a bilaterally filtered Gaussian kernel
incorporating pixel intensity and distance, while also requiring
two additional parameters. Alternatively, edge weights can be

defined based on such metrics as local pixel patches or
overhead features.28 Ultimately, the definition of these edge
weights is application-dependent,29 with the solution to the
pathfinding problem changing as the underlying relationships
between each set of points is altered. As such, using edge
weights to find the absolute path of least energy (in the context
of energy landscape problems) requires that the optimized
output from one arbitrary weighting function be compared to
an infinite number of competing weighting functions -
presenting an endless search for each graph-based approach.
Further, the very choice of overhead metric within the

contextual demands of each system is a source of uncertainty.
In the case of the macromolecular assembly driven by thermal
motion, such a metric should reflect the total integrated energy
of each possible path, while also analyzing these paths within
the landscape’s hierarchy of distinguished scales (macroscopic,
mesoscopic, and microscopic4). Regardless, algorithms do exist
that use broad, graph-based approaches to navigate between
states in the energy landscape. One such tool is the Dijksta-
inspired MEPSA (Minimum Energy Pathway Analysis30)
which will be analyzed and compared in detail with our
method.
Another class of algorithms includes the chain-of-states

method,31,32 whereby a set of nodes along an initially straight
pathway between two local minima is relaxed to find the
minimum-energy path. These nodes are optimized with
physical constraints such that the chain-of-states are connected
by spring forces to ensure equal spacing along the reaction
path.33 Uncertainty in this class’ performance is first
introduced in the initial choice among several competing
methods, which include such options as “nudged elastic
band”,34 “doubly nudged elastic band”.35 “string”,36 and
“simplified string”.37 Once chosen, certainty in each method
is additionally limited by a subsequent choice in the applied
force-based optimizer, including such as options as “steepest-
descents”, “quick-min”, “fast inertial relaxation engine”,
“conjugate gradients”, and ‘limited memory Broyden-Fletch-
er-Goldfarb-Shannon” - with each optimizer presenting its own
strengths and limitations.33 Additionally, for highly complex
energy landscapes having several competing global pathways
separated by massive maximum-energy regions, without
foresight, this class of methods will become globally restricted
to the linear region between the local minima they happen to
be initiated between.
POLARIS (Path of Least Action Recursive Survey)38

provides an alternative approach to these minimum-energy
pathfinding algorithms by avoiding the arbitrary assignment of
edge weights, physics-based optimizers, or globally restrictive
strings. Instead, POLARIS aims to prioritize and isolate the
most energetically favorable coordinates in a given landscape -
as these represent highly occupied transit regions on the
macroscopic scale. This initial method reflects the paradigm
used by hierarchical pathfinders,39 whereby the high-level
overview route is assigned first by analyzing the most favorable
transit locations in between. Between these anchors in the
landscape, all permutations of a set of higher-order lines are
drawn with the net energies compared from each. The
algorithm then takes the resulting minimum-energy discoveries
as new inputs to itself to repeat this procedure recursively -
breaking down each best global line approximation into
continuously finer, mesoscopic subsections until the finest-
granular, microscopic path is resolved.
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■ METHODS

POLARIS is a cross-platform, open-source program written in
Python 3.x,40 a graphic user interface built using PyQt5,41 plots
drawn using Matplotlib,42 and operations performed with the
aid of NumPy,43 Python’s Itertools, and Bressenham’s Line
Algorithm.44 POLARIS has been designed as a user-friendly
tool able to analyze transition pathways through 2D energy
landscapes in pursuit of expediting the discovery of their most
significant pathways.
By defining spatial subdivisions for isolating minima within

the energy landscape (see Section 1: Image Segmentation) and
creating the set of all possible permutations between them over
a range of increasing line orders (Section 2: Permutational
Analysis), POLARIS is able to compare global path
approximations, isolate favorable minima, and construct local
solutions between them as it methodically implements its
optimized outputs as inputs to itself (Section 3: Branching

Recursions). These steps are performed consecutively and will
be discussed in this order in the sections below.
As a note, to ensure that this procedure can be performed

regardless of data dimensions, the width and height of the
original data file are first trimmed to the nearest even pixel
when necessary. Next, maximum energy borders are added to
the file; expanding one power of 2 above the landscape’s
dimensions (e.g., for a 70 × 70 dimension landscape, the data
is given a border of 29 pixels on each side, such that a 27 × 27

landscape is created, with the extra space filled in uniformly
with the highest energy value obtained from the given file). All
borders are removed at the end of the computation.

1. Image Segmentation. Image segmentation is the
process of dividing the landscape into a number of equally
sized squares and recording the coordinates of the local
minimum-energy values within each (Figure 1). The
“segmentation depth”, n, defines the number of these
subdivisions created and, thus, the number of local
minimum-energy coordinates recorded. The user defines the

Figure 1. Computationally generated landscape featuring increasing image segmentation depths, with segmenting lines (black) overlaid on n1 (A)
and n3 (B) for visualization of the division. Local energy-minima are plotted as single white points exclusively occupying each square subdivision. In
rare cases of multiple equal-valued minima per segment, only one minimum is selected, with subsequent depths capturing the alternative values. To
maximize efficiency, no minima are obtained for segmented regions containing a uniform spread of globally maximum energy levels (as seen in the
northwest corner of D). This landscape was created to exemplify the hierarchical scale seen in energy landscapes, whereby additive Gaussian noise
was applied across all pixel intensities to represent unavoidable experimental uncertainties during data acquisition and processing.
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set of segmentation depths, {ni}, to use within the parameters
tab; e.g., {n7, n5} or {n7, n5, n4, n3}, etc.
For each ni, Ni = 4ni image subdivisions are created, with an

equivalent number of minimum-energy points stored - such
that, for n1, the coordinates of 4 local energy-minima are stored
(Figure 1A). Within this set, the highest allowable value of ni,
nmax, is defined via that subdivision where further image
divisions are impossible (e.g., for a 64 × 64 landscape, nmax =
log2(64) = 6 subdivisions), so that every segmented grid spans
an area of exactly 1 pixel (Figure 1D).
As the segmentation depth is increased from n1 to nmax,

previously overlooked higher-energy minima (relative to the
system’s global minima) are geometrically separated from the
global minimum values and placed into their own neighboring
grids. Since these locations become newly defined local energy-
minima at higher depths, this method ensures that all points
are eventually considered as potential nodes in the permuta-

tional analysis of the pathway, to be outlined in the next
section.

2. Permutational Analysis. Each set of 4ni minimum-
energy coordinates obtained from each ni during image
segmentation is subsequently used as transit options for
comparing potential paths across the energy landscape. Here,
for each ni, permutations of straight lines are connected
between the set of 4ni coordinates and the user-defined start
point, S, and end point, E (Figure 2). The “permutational
order”, r, defines how many intermediate transit options can
exist between S and E. For example, if there are 4 transit
options (via n1), r1 would sample all ways of bridging S and E
with straight lines using only 1 transit coordinate - a total of 4
permutations are possible. These permutations are created via
Itertools, such that for n1 with minima M1, M2, M3, and M4,
paths S → M1 → E, S → M2 → E, S → M3 → E, and S →
M4 → E are generated (Figure 2A, Figure 2B).

Figure 2. Computationally generated landscape showing permutational order r1 (A, B) and r2 (C, D), each assigned n1. User-defined start and end
points are labeled S and E, respectively. For r1, 4 permutations exist with one unique midpoint each, for which two are shown (A, B). For r2, 12
permutations exist with two unique midpoints, for which two are shown (C, D). The energies along the full set of these pathway permutations are
integrated and compared (e.g., selecting the lowest-energy path of the 4 (A, B) or the lowest-energy path of the 12 (C, D), etc.). The lowest-energy
paths obtained from each {ni, rj} combination are then compared to find the lowest-energy approximation for all given combinations of
permutational orders and segmentation depths.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b01108
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.jcim.9b01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01108?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b01108?ref=pdf


For each user-defined value of ni, a partnering value for the
permutational order, rj, must also be chosen, e.g., {(n7, r1), (n5,
r2)}, etc. Here, rj can range from r0 to rmax, with r0 representing
the line directly connecting S to E (with no midpoints in
between). The value of rmax is restricted within the user
interface to 5, with higher values deemed counterproductive to
the aim of this interpolative procedure. Within this
formulation, the standard permutation notation NiPrj represents
a unique combination of some ni and rj, with Ni = 4ni. As an
example, for n2 with r2, one such path S → M1 → M16 → E is
created among 239 other permutations, via N2 = 4n2 = 16 and
16P2 =

16
(16 2)

!
− !

= 240.

Within each member of a given {ni, rj} permutational pool

(e.g., {4
1

P1,
41P2, ...}, as seen in Figure 2), each set of ordered

transit points is connected by straight lines, drawn using a
variant of Bressenham’s Line Algorithm modified for energy
awareness. These path approximations act to gather overhead
awareness across different regions in the energy landscape. The
total energies across the paths formed by each of these
permutations is then independently integrated, with only the
transit points from the minimum-energy permutation stored
for that {ni, rj}. This process is then repeated for all
combinations of {ni, rj}, ultimately only storing the set of
transit points belonging to the lowest-energy path approx-
imation discovered between the initial S and E. For example, if
parameters {(n7, r1), (n5, r2)} are chosen, 16,384 + 1,047,552 =
1,063,936 paths are generated - with only the original list of
minimum-energy coordinates pertaining to the path of overall
lowest-energy stored. These minimum-energy coordinates are
then introduced as inputs for the subsequent computations.
3. Branching Recursion. POLARIS next uses the

minimum-energy nodes discovered in the previously per-
formed permutational analysis recursively as inputs to itself
(replacing the initial user-defined inputs S and E with the set of
these newly discovered intermediate, minimum-energy nodes).
First, a for-loop is created between each pair of intermediate
nodes, such that if the pathway containing points S → M1 →
M2 → E were found as a minimum among all other
permutations in the previously described steps, a loop
containing S → M1, M1 → M2, and M2 → E would emerge.
Within this loop, POLARIS performs branching recursion

(Figure 3), repeating all of these aforementioned procedures
on its newly obtained outputs. From here, the permutational
steps are repeated for each new set of start and end points
discovered - proceeding recursively down each inner branch,
until two output points having lowest-line approximation r0 are
found within each one of its individual leaves (defining the
maximum extent of each branch). Upon encountering each
leaf-break, the coordinate of that leaf is globally recorded. This
process continues with the algorithm navigating throughout its
recursive hierarchy until the path of least action is filled in
completely with a set of coordinates spanning from the initial,
user-defined start point to the initial, user-defined end point.
This process is akin to performing interpolation on the space

between each start and end point within each recursion,
whereby two anchors are known, and all points in between
unknown. Those unknown points are then iteratively
discovered via a complete set of the previously described
permutational comparisons. Ultimately, these recursive steps
break down the best global line approximation into
continuously finer subsections within each recursion until the

finest-granular path is resolved - giving rise to both global and
local awareness of the landscape.
To remove unnecessary permutational calculations within

the branching recursion hierarchy and, thus, shorten the
computational effort, once a set of {ni, rj} parameters is chosen,
only those combinations within the set that are spatially viable
for the current S and E coordinates are computed. Thus, if the
Euclidean distance between one set of S and E coordinates in
the branch is smaller than the distance covered by the minimal
spanning line of a specifically chosen combination of n and r,
the permutational analysis for that n and r combination will be
skipped.

4. Pathway Pruning. As an artifact of Bresenham’s Line
Algorithm for drawing straight line approximations, there
remain a multitude of ways to alias a diagonal line between the
same two sets of coordinates (e.g., two different permutations
can emerge for the same straight line when drawn S → E
versus E → S). To work around this problem, pruning
techniques have been implemented on the final set of
coordinates of the complete least action trajectory. These
include finite, local perturbations along each coordinate in the
completed path. So long as these perturbations preserve the
continuity of the overall path (no breaks), every point is
iteratively sent to occupy its set of unrestricted neighboring
pixels and reshuffle into those coordinates that ultimately
minimize the pathway’s global energy.
As a note, any coordinates having zero-energy are never

pruned from the pathway, safeguarded during this process for
their significance in the energy landscape. This ensures that the
overall line may still pass through these locations - including
situations where the zero-energy point is neighbored by three
other points in the path. Within this exception, it follows that
no energy contribution is added to the path of least action.

■ RESULTS
An experimentally generated free-energy landscape was used
for testing POLARIS’ performance (Figure 4) - previously
constructed outside of this study through application of the
ManifoldEM techniques to a set of ribosomal cryo-EM data.19

Figure 3. (In the following, we use the notation POLARIS-
(input1, input2) to describe one complete cycle of Image
Segmentation and Permutational Analysis, starting with points
input1 and input2). If the minimum-line outputs from the
initial seed, POLARIS(A, D), include points B, C, and D,
POLARIS(A, B), POLARIS(B, C), and POLARIS(C, D)
are subsequently called - with each one forming a new branch across
the next-highest tier in the hierarchy. Red numbers indicate the order
in which POLARIS navigates its recursive hierarchy. Broken leaves
represent pairs of data points where further segmentation is futile; i.e.,
no lower energy line exists between them (occurring exclusively when
r0 is returned as the lowest-energy approximation).
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The ribosome has long been described as a “thermal ratchet
machine”,45 whereby random energetic perturbations lead to
large-scale shifts across its available configurations. The
landscape obtained represents the conformational state space

available to the naked ribosome (i.e., the ribosome in the
absence of its functional ligands), with the “reaction
coordinates” corresponding to the two highest-ranking,
orthogonal factors for motion. Based on the manifold analysis,

Figure 4. Energy landscape for the reaction coordinates of the naked ribosome during translation elongation. Data taken from ribosomal reaction
coordinates determined from cryo-EM data by ManifoldEM.19

Figure 5. Comparison between MEPSA’s “GLOBAL” algorithm (A) and POLARIS (B). POLARIS found a radically different global path than
MEPSA, returning a path of integrated energy 11.0 kcal/mol less with a 53-point difference in path lengths. For the POLARIS run, the option
“Transition State Weighting” was used with search depths {r1, n7}, {r2, n5}, and {r4, n3}, taking approximately 6 min using multiprocessing with 4
1.2 GHz processors and 8 GB of memory.
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these orthogonal factors are thought to represent the
ribosome’s leading, human-defined conformational motions
during translocation - encompassing a composite of large-scale
movements of its two subunits,19,46 including an intersubunit
rotation and a swivel motion of the small-subunit head.
Analysis of 3D reconstructions along the naked ribosome’s
trajectory revealed that in the thermal bath it undergoes
conformational changes akin to those observed for factor- and
GTP hydrolysis-driven translating ribosomes - clearly demon-
strating the macromolecule’s intrinsically flexible architecture.3

Conformations reported by cryo-EM reveal that each “state”
of the ribosome is actually an ensemble of structurally similar
configurations clustered within a specific minimum-region on
the energy landscape.3 At the same time, the rugged, higher-
energy hills correspond to the less-favorable states of the
macromolecular complex as it travels from one minimum to
the next. Given such a system, to properly delineate the
ribosome’s key mechanisms of translation control, POLARIS
was used to determine the most likely transitional pathways
between different selections of energy basins.
Comparison of Results from POLARIS and MEPSA.

For validation, POLARIS’ results were compared to those
obtained with a published energy landscape analysis algorithm
entitled MEPSA (Minimum Energy Pathway Analysis),30

which uses an approach similar to Dijkstra’s algorithm,24

with small differences in the sampling and trace-back. The
metric used to compare the two algorithms is the final
integrated energy from a single continuous list of coordinates
spanning between any two user-defined points.
The MEPSA tool allows two options for algorithmic

comparison: the self-defined, less accurate “GLOBAL” option
(capable of accepting arbitrary user start and end inputs as well

as predefined anchor points) and the more accurate option
“NODE BY NODE” (accepting only predefined global minima
as user inputs). For the first comparison, the “GLOBAL”
approach was chosen to compare each program’s output given
any set of user-defined start and end coordinates, here using
(41, 51) and (17, 14), respectively, on the ribosome
energy landscape (Figure 4). Chosen for the complexity of the
regions in between, this trajectory includes opportunities for
traversing many narrow, branching low-energy pathways
throughout the center of the landscape, as well as a final
leap across a mountain range of highest-energy coordinates
into a pool of minimum-energy.
The net energy of the least-energy pathway found by

MEPSA was 34.6 kcal/mol with a length of 106 points,
containing many unnecessary regions where the algorithm
appeared to draw jagged lines between its predefined nodes
(Figure 5A). For the same points, POLARIS returned a
globally different 53-point 23.6 kcal/mol path (Figure 5B),
showing a difference of 11.0 kcal/mol between the two
algorithms in favor of POLARIS. To place this energy
difference within biological context, under standard conditions,
the kinetic energy released by the hydrolysis of a single
molecule of GTP is approximately 7 kcal/mol.47

For the “NODE BY NODE” comparison, MEPSA’s node 2
(16, 23) and node 41 (47, 55) were selected from the
set of MEPSA’s predefined nodes based on their proximal
similarity to the arbitrary points selected in the “GLOBAL”
comparison above. The pathway found by MEPSA returned an
integrated energy of 28.5 kcal/mol with 98 points (Figure 6A).
POLARIS used the same nodes 2 and 41 as user inputs and
identified a 72-point pathway having an integrated energy of
20.0 kcal/mol (Figure 6B). The total difference between the

Figure 6. Comparison between MEPSA’s “NODE BY NODE” algorithm (A) and POLARIS (B). While both algorithms again found the same
approximate global path, POLARIS returned a path of integrated energy 8.4 kcal/mol less with a 26-point difference in path lengths. For the
POLARIS run, “Transition State Weighting” was used with search depths {r1, n7}, {r2, n5}, and {r3, n3}, taking approximately 5 min using
multiprocessing with 4 1.2 GHz processors and 8 GB of memory.
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two minimum-energy approximations found by the two
algorithms was 8.5 kcal/mol, again favoring POLARIS.

■ DISCUSSION

In both comparisons with MEPSA, POLARIS’ outputs gave a
substantially lower energy path while providing higher
flexibility in the choice of user-defined start and end points,
as well as in the number of optional user-defined transit
locations. MEPSA’s more flexible “GLOBAL” analysis
performed most poorly in comparison to POLARIS, with a
different global route and a greater difference in path energies
and number of path-points. While the final paths from
MEPSA’s “NODE BY NODE” analysis and POLARIS
followed the same broad regions throughout the landscape,
the MEPSA algorithm appeared to favor the production of
jagged segments and deviated from POLARIS’ minimum path
within regions of its locally defined nodes (such as in the
southeast corner of the landscape).
As a further explanation for this large difference in energy

and number of path points, MEPSA grows its trajectory in
strictly cardinal directions (N, E, S, W), while POLARIS makes
allowances for both cardinal and ordinal directivity (N, NE, E,
SE, S, SW, W, NW) whenever locally required. Since the
energy landscape represents a molecule’s movement as a
combination of its two reaction coordinates, any combination
of the two must be accounted for - including cardinal (where
only one coordinate is altered at a time) and ordinal (where
both coordinates change simultaneously). In theory, this

principle should hold for all reaction coordinates, regardless
of context.
As for computation time, it should be noted that MEPSA

generated the above paths within seconds. However, MEPSA’s
self-defined “global minimum” solutions were undershot
considerably by POLARIS’ techniques. While POLARIS is
capable of similar speeds at drastically lowered segmentation
depth and permutational order, the lowest-energy trajectories
found (shown here) required more computation time (5−10
min, with 4 1.2 GHz processors and 8 GB of memory). Thus,
when weighting accuracy over timing, POLARIS’ methods
seem considerably more fit. Although these differences may
seem trivial from a macroscopic view, such exactitude is
essential on the microscopic level for accurately calculating
biologically relevant reaction rates via downstream algorithms.
In the discussion to follow, POLARIS will be analyzed in terms
of three features, “Completeness”, “Accuracy”, and “Complex-
ity”.

Completeness. The greater the number of permutations
that POLARIS is allowed to iterate through and compare
against, the more accurate its computations will be in obtaining
the minimum-energy path. However, since the purpose of
POLARIS is to limit this exhaustive search, it instead seeks to
iteratively find the set of optimal approximations by use of
feasible parameters (user-defined {NPr} combinations) be-
tween any two successive recursions, thus performing a series
of computationally inexpensive operations that ultimately give
rise to the same output as would one computationally
exhaustive approach. Because of this, limits must be drawn

Figure 7. Comparison of two approximately degenerate paths found via POLARIS. To create each path, midpoints were placed alongside the initial
user-defined start and end points - forcing POLARIS’ exploration of both routes independently on separate runs. These two diverging paths go
through the center (black points) and southeast (white points) regions of the landscape and contain path energies 9.0 kcal/mol (with 16 points)
and 8.5 kcal/mol (with 37 points), respectively. With only a difference of 0.5 kcal/mol between them, it is possible that such a degenerate least-
energy bifurcation could represent novel reaction mechanics that allow for flexibility in macromolecular processes both spatially and temporally. For
example, the bifurcation seen above may represent a shortcut in the ribosomal work cycle (elongation) that only becomes available under specific
buffer or temperature conditions - allowing the ribosome to modulate its reaction rates based on fluctuating environmental signals.
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on the total number of permutations allowed for the program
to compute and compare between.
This total permutation limit is set by the user under the

“Parameters” section found within the “Settings” tab (Figure
S2). Here, combinations of n and r can be chosen for each
{ri=1

5 }, with the total number of permutations accessible from
that combination calculated to the right (as given within the
adjacent P(4n, r) entry box).
For r1, the maximum image subdivision depth, nmax, is

automatically chosen from the given data file. At this depth,
every value on the landscape is represented as a possible
minimum node at least once, with this parameter thus
comparing between all permutations of single points between
each new S and E varying across all recursions. As nmax contains
all other minima options within it (obtained individually from
n1 to nmax−1), it is redundant to compute any other
combination less than this value for r1 (with equivalent logic
holding for all other ri).
Accuracy. Uncertainty is first introduced in the choice of

the overhead metric and its ability to realistically encapsulate
the dynamics of the system being explored. For example, for
the potential energy surface of a chemical reaction, a reaction
could be approximated either by the path having the lowest
integrated energy or by the path having to surmount the lowest
maximum peak or “activation energy” (Figure S3). To provide
flexibility in this overhead metric, POLARIS offers the
“Transition State Weighting” constraint, which can be enabled
to weight the comparison of competing lowest-energy paths
based on their rate-limiting step (point of maximal energy
through which that path passes) instead of by just the net
integrated energy along that path (Figure S4). When this
feature is activated, POLARIS weights all energies across the
landscape based on a power function - keeping lower energies
approximately untouched while making higher-energy coor-
dinates increasingly more unfavorable. When bifurcation
opportunities exist within a landscape (as in the case of the
central, branching region of Figure 4), significant uncertainty
can be introduced for the path of least action. This is especially
relevant when such bifurcations are approximately degenerate -
leading to two distinct paths of almost equivalent energy
spanning radically different regions of the landscape.
During pathway comparisons on the example ribosome

landscape, POLARIS isolated one such nearly equivalent-
energy bifurcation - dividing the ribosome’s most probable
sequence of configurations into two discrete sets separated by a
high-energy island (Figure 7). From an accuracy perspective,
this instance illustrates the reliance on POLARIS’ user
parameters in constructing its least-energy path, as well as
the importance of the user experimenting with these
parameters to achieve optimum results (Figure S5).
As an aside, an exploration of such bifurcations can be

instrumental for elucidation of a given system’s underlying
dynamics. For example, the user can supply defined midpoints
between the set of start and end coordinates to resolve a
bifurcation (e.g., by placing one anchor at a minimum point in
the middle of the landscape for one run, followed by another
anchor instead at a minimum in the southeast corner for the
next), with the added ability to then compare each least-energy
approximation after completion of both runs.
Finally, as a note on scalability, it is anticipated that

POLARIS will discover slightly different paths of least action
given different “binnings” of the same energy landscape (e.g., if
a 70 × 70 pixel landscape is compressed into a lower resolution

image). However, these results should only be globally
different when relatively close bifurcation possibilities also
exist within that landscape along the regions of the intended
path (as is similarly described above).

Complexity. In the application, the number of contending
lowest-energy paths becomes very large as the size and
topological complexity of the landscape increases - making an
exhaustive computational search for the path of least action
infeasible toward these limits. Large and highly complex maps
should therefore be used with this limitation in mind.
The range of available permutations to search through is

proportional to the size of the data file (as seen via the
available combinations of n and r). As increasingly larger
combinations of {ni, rj} are chosen, the time for each search
will also increase, as defined by the number of available
permutations (i.e., {NPr}). Thus, the time required by each run
is ultimately governed by the algorithm’s rate limiting step,
itertools.permutations, via O(NPr).
In its current state, POLARIS is best applied to energy

landscapes of biologically relevant size, at dimensions similar to
the scale of reaction coordinates seen within chemistry and
biophysics,19,48 (i.e., a 70 × 70 dimension landscape). To
minimize computational efforts for landscapes larger than these
dimensions, pixel values could be binned beforehand or
masked out to only those regions of interest - both of which
will be supplied as future options within the POLARIS user
interface.
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