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Abstract

Molecular machines visit a continuum of conformational states as they go through

work cycles required for their metabolic functions. Single-molecule cryo-EM of suitable

in vitro systems affords the ability to collect a large ensemble of projections depicting the

continuum of structures and assign occupancies, or free energies, to the observed states.

Through the use of machine learning and dimension reduction algorithms it is possible

to determine a low-dimensional free energy landscape from such data, allowing the basis

for molecular function to be elucidated. In the absence of ground truth data, testing

and validation of such methods is quite difficult, however. In this work, we propose a

workflow for generating simulated cryo-EM data from an atomic model subjected to

conformational changes. As an example, an ensemble of structures and their multiple

projections was created from heat shock protein Hsp90 with two defined conformational

degrees of freedom. All scripts for reproducing this workflow are available online.1
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Introduction

Molecular machines, macromolecular assemblies comprised of proteins or nucleoproteins that

perform basic life functions, undergo numerous conformational changes and visit a large

number of states in the course of their work cycles. For some molecular machines, such as

the ribosome, it has been possible to develop in vitro systems with all components necessary

to run productive work cycles delivering the product; in this instance a protein. Even though

the atomistic composition of molecules ultimately defines a finite step size, these states form

a quasi-continuum due to the complexity of the structures involved and the large number of

steps in their interactions.

Through application of advanced imaging techniques, single-particle cryogenic electron

microscopy (cryo-EM)2–4 allows macromolecules in an in vitro suspension to be experimen-

tally visualized en masse after rapid freezing in vitreous ice at a rate that is assumed to

be faster than the overall reconfiguration time of the system.5 As a result, the ensemble

of frozen molecules closely approximates the equilibrium distribution of states immediately

prior to being frozen. Cryo-EM aims to capture the macromolecule in its complete form:

encompassing all projection directions across its continuum of allowable states.

Recent advances in cryo-EM resolution have inspired the development of several data-

analytic approaches that aim to systematically describe the characteristics of the ensemble.

These methods rely on dimensionality reduction to gain insight and understanding of the

most significant phenomena captured in the data. Linear dimensionality reduction meth-

ods have been proposed using principal component analysis (PCA) on the 3D molecular

structures.6–11 However, these techniques are unreliable for mapping intrinsically nonlinear

conformational spaces of molecular machines. To circumnavigate this problem, nonlinear

techniques have also been applied12–15 via the Diffusion Maps method16,17 to represent the in-

trinsic conformational manifold of the cryo-EM data. This manifold can then be traversed to

fully recover the molecular machine’s full set of most significant conformational coordinates.

Recently, taking a page from both books, the Laplacian spectral volumes method18 combines
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both linear and nonlinear dimensionality techniques in its search of a lower-dimensional de-

scription of the data using only a few effective coordinates. A range of other techniques for

analyzing cryo-EM continua are also being implemented,19 extending into work using deep

neural networks.20

Regardless of technique, once the state space has been sampled and organized along

these coordinates, the distribution of sightings at each state can be transformed through the

Boltzmann relationship into a free-energy landscape.21 The free-energy landscape provides

the thermodynamic likelihood of a hop from any one state to any of its immediate neighbors.

The topology of this landscape characterizes the system’s navigational potential, with deep

wells representing distinct regions of conformational states and mountainous regions con-

straining the transitions between them. Further, since specific sequences of conformations

give rise to biomolecular function, this descriptive mapping also accounts for the molecu-

lar machine’s functional dynamics.22 If these algorithms are successful, the potential exists

for creating the conformational free-energy landscape for any molecular machine capable of

being visualized by single-particle cryo-EM.

Since the energy landscapes of molecular machines are not experimentally known, these

techniques cannot be immediately validated. Instead, they must first be tested on sim-

ulated cryo-EM images of a synthetically-designed ensemble having known structural and

dynamical properties. To this end, we have constructed a workflow for creating a synthetic

quasi-continuum of structures from an experimentally-relevant ground-truth model. The

resulting dataset emulates the macromolecular statistical ensemble of projections obtained

from single-particle cryo-EM experiments. Specifically, the following features are incorpo-

rated in the simulation: (1) two independent, easily identifiable conformational motions; (2)

an exactly defined distribution of occupancies across all states; (3) uniformly sampled pro-

jection directions; (4) additive Gaussian noise with appropriate signal-to-noise ratio (SNR);

and, (5) experimentally-accurate microscopy parameters for each image, represented by the

contrast transfer function (CTF). Given such absolute control and knowledge of the baseline
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object’s mechanics, both the accuracy of machine-learning algorithms and appropriateness

of maximum-likelihood approaches can be quantified with exactitude, thus providing an

assessment of these techniques’ strengths and limitations.

Methods

Our procedure for the creation of a synthetic continuum dataset is outlined in Figure 1.

First, a suitable macromolecule (for which a PDB atomic structure exists) is chosen as a

foundational model. The atomic coordinates from this PDB file allow the continuum model

to be generated at the ground level. Using this atomic structure as a seed, a sequence of

additional states is then generated by altering specific subregions of the macromolecule’s

structure so as to represent quasi-continuous conformational motions. In this way, many

sets of coordinates in PDB format are generated. The number of these mutually decoupled

motions defines the number of degrees of freedom, n, realized by the system (i.e., the number

of independent conformational motions). In sum, this quasi-continuum of states spanning

n conformational motions defines the molecular machine’s state space. In our example (see

Results), n = 2 was chosen to demonstrate the simulation procedure.

Every structure created within this state space is then aligned along a common set of 3D

coordinates (representing a particular reference structure) to ensure all motions are centered.

These centered structures are then converted into 3D Coulomb potential maps, whereby

values of electric potential are stored in each voxel. The values in these voxels thus represent

the net electrostatic contributions in each region of space from all atomic species within the

corresponding PDB-formatted structure file.

At the same time, an occupancy map is created to represent the preference of a molecule

to occupy its state, defining the energetics of the state space (i.e., the likelihood of each

state to be observed in the experiment). This map is then used to create clones of the 3D

Coulomb potential maps. For each 3D Coulomb potential map, an alignment parameter text
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Figure 1: Flowchart representation of the workflow used for creation of the synthetic con-
tinuum dataset.

file is created to store all relevant information for calculating multiple 2D projections of that

map. These files contain all of the angular information and experimentally-relevant electron

microscopy parameters required to define the characteristics of each 2D projection taken,

including modification by the contrast transfer function.

These alignment parameter files are then used as inputs into a 2D projection algorithm.

Projections of each alignment file’s corresponding Coulomb potential map are obtained via

standard line integrals in selected directions as to mimic projections generated in the trans-

mission electron microscope operated in the bright-field mode. As a result, an image stack of

synthetic 2D cryo-EM projections is produced for every 3D Coulomb potential map. Noise

is then added to each image across all of the image stacks individually. The final output

is a single stack of simulated cryo-EM 2D projections with a corresponding alignment file

detailing information for each individual image in that stack. These files in total encompass

the entirety of the 3D synthetic continuum as in an idealized cryo-EM experiment.
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Results

The heat shock protein Hsp9023 was chosen as a starting structure for this workflow due to

its simple design - exhibiting two arm-like subunits (chain A and B, containing 677 residues

each) connected together in an overarching V-shape. In vivo, these arms are known to close

after binding with ATP – with Hsp90 acting as a chaperone to stabilize the structures of

surrounding heat-vulnerable proteins. During its work cycle, Hsp90 naturally undergoes

large conformational changes, transitioning from its two arms spread open in a full V-shape

(inactive state) to both arms bound together along the protein’s central line of two-fold

symmetry (active state) following ATP binding. We initiated our workflow with the fully

closed state (via entry PDB 2cg9), whose structure was determined at 3.1 Å using X-ray

crystallography.24

Casting Hsp90’s biological context aside, liberties were taken in the choice of the syn-

thetic model’s leading degrees of freedom. Instead of one singular range of conformational

motions (arms open to closed, as in vivo), we decided on two unique motions that covered

similar distance scales while being both easily identifiable and visually separable. These two

conformational motions were designed so as to be fully decoupled from each other (i.e., the

number of degrees of freedom n = 2), such that no overlap occurred between the two sets

of distinct atomic displacements (Figure 2). To further avoid any unintentional coupling

between these motions, no minimization of electrostatic energies between all atoms (to cor-

rect geometry) in each conformational state was performed. To note, although we believe

that two conformational motions meet the minimum level of sophistication required to test

machine-learning algorithms, any number of decoupled motions could be defined during this

process. As an example of recent use, the manifold embedding technique implemented in

ManifoldEM15 currently analyzes energetics in sets of a maximum of two conformational

motions (as currently restricted by the lack of available datasets with statistically relevant

higher-order eigenfunctions).

Atomic manipulations of the original PDB coordinate file were done using PyMOL.25
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For the first motion (termed Conformational Motion 1, or CM1), the chain A arm was

rotated outwards (directly away from chain B) from its central hinge (at residue 677), in 1°

increments until a series of 20 rotational states had been defined (Figure 3A). For each of

these 20 CM1 states, all residues above chain B’s elbow (residues 12-442) were then rotated

perpendicularly to the CM1 motions in 2° increments until a series of 20 rotational states

Figure 2: PDB of state 20_01 with residues demarcated for CM1 (green) and CM2 (red).
The CM1 central hinge can be found near the intersection of the blue and green regions at
residue 674, while the CM2 hinge is found near the intersection of the blue and red regions
at residue 443. To note, the residues making up the blue region are immobile throughout
the entire state space. As well, the maximum diameter of the protein was measured in this
state at approximately 120 Å.
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had been defined for the second motion (termed CM2, Figure 3B). These operations resulted

in the creation of a total of 400 unique conformational states. The ensemble of these states

can be organized in a 20×20 state space, whereby each entry represents one of the possible

combinations of CM1 and CM2. This state space represents our synthetic model’s complete

ensemble of physically allowable conformations (i.e., the quasi-continuum). The specific size

of the state space (400 states) was chosen based on the relative scale of the protein and range

of its motions, providing approximately 3 Å and 2 Å gaps between states over a total arc

length of 60 Å and 40 Å for CM1 and CM2, respectively.

Figure 3: Figure 3A presents a comparison of CM1’s first, middle, and final states (state
01_01, 10_01, and 20_01, respectively). In Figure 3B, a comparison of CM2’s first, middle,
and final states are shown (state 20_01, 20_10, and 20_20, respectively). This rotation was
performed perpendicularly to CM1’s hinge-rotation, whereby only those atoms above chain
B’s elbow-region were perturbed. As a note, to remove the potential for overlapping residues
within certain states, residues 1-11 (making up a loose tail) were removed from both chain
A and B.

These 400 structures represented by PDB files were then individually transformed into

400 3D Coulomb potential maps (formatted as MRC volume files) with a sampling rate of

1 Å per voxel and simulated resolution of 3 Å (chosen based on the resolution determined

for PDB 2cg9) using the EMAN module e2pdb2mrc26 (Figure 4). As a note, all 3D atomic

coordinates were moved to a common frame of reference using Phenix27 (as defined by

state_01_01’s center of mass) to ensure all motions were centered.
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Next, an arbitrarily defined 2D occupancy map was created and assigned across all mem-

bers in the state space (Figure 5A) so as to simulate the number of sightings of each con-

formation that would be obtained via cryo-EM. Each entry in this occupancy distribution

is an integer ∈ [1,..,9] used to define the number of clones produced for each state. As the

number of sightings of each conformation observed in an experiment directly relates to its

underlying energetics, this distribution was then transformed via the Boltzmann factor into

its corresponding energy landscape (Figure 5B).

A unique RELION29 alignment parameter file (in STAR format) was created for each of

the 1000 Coulomb potential maps (consisting of the original 400 maps plus their multiple-

occupancy clones). The STAR format of RELION was used for organizing and storing

information on each of the 2D snapshots obtained from the simulated cryo-EM experiments.

By convention, each row in the alignment file represents a single snapshot of a macromolecule

from the experimental ensemble, with its columns detailing that snapshot’s corresponding

Figure 4: Figure 4A presents a volumetric overlay of first three rotational states of CM1
(state 01_01, state 02_01, state 03_01), visualized as Coulomb potential maps (MRC for-
mat) via Chimera.28 As can be seen, only the upper arm (chain A) has been rotationally
displaced along CM1, with 3 Å gaps measured between each consecutive state at the pe-
ripheral ends of this rotated region. Figure 4B presents a volumetric overlay of last three
rotational states of CM2 (state 20_18, state 20_19, state 20_20). Only the upper region
of chain B (above the elbow) has been rotationally displaced along CM2, with 2 Å gaps
measured between each consecutive state at the peripheral ends of this rotated region. To
ensure that the two conformational motions (CM1 and CM2) were completely decoupled, no
interpolation techniques (such as implemented in PyMOL’s morph command) were used for
state generation - as these morphs propagate small movements between atoms that could
weakly couple CM1 with CM2.
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microscopy parameters. As each experimentally-obtained image naturally captures a macro-

molecule in a range of different spatial orientations, angular assignments were given to map

the position of each image within the orientational space. The location of each snapshot in

this space is represented by a combination of Euler angles, which are provided in the columns

for each row within the alignment file. Along with this information, additional columns carry

the location of the macromolecule’s center of mass in the image, the defocus values of the

image, and other relevant parameters such as voltage, spherical aberration, and amplitude

contrast ratio.

To create simulated snapshots of Hsp90 within this framework, we needed to first create

alignment files that contained the relevant parameters needed for subsequent 2D projection

Figure 5: Figure 5A presents the 2D distribution of occupancies for all 400 states in the state
space. The formula1 for this occupancy map was chosen as to provide easily distinguished
features along both 1D (Figure 9) and 2D conformational motions. As an example of use,
only the original copy of state 01_01’s Coulombic potential map was used, while 9 copies
of state 10_06’s Coulombic potential map were created for use in all subsequent steps. In
total, the creation of these clones increased the number of MRC volume files was increased
from 400 to 1000. Figure 5B presents the transformation of the occupancy map (Figure 5A)
into its corresponding energy landscape via the Boltzmann factor: −log(mi/m), where mi

is the occupancy of the current state and m is the maximum occupancy across all states.
Within this distribution, the state with the lowest energy is defined at zero kcal/mol, while
the highest energy state has an energy of 2.2 kcal/mol (occurring at states 10_6 and 11_6).
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operations to be performed. Given this agenda, we created an alignment file with 812 rows

for each volume in our synthetic dataset. These 812 rows were each given a set of Euler

angles from a uniformly spread distribution in orientational space, representing 812 vertices

(viewing directions of that state of the molecular machine) on an evenly tessellated sphere

(Figure 6). For each row within every alignment file, a value for contrast transfer function

(CTF) parameters was randomly assigned from within an experimentally relevant range

(defocus values assigned evenly between 2,000 and 10,000 Å). Constant values were used

for voltage (300 kV), spherical aberration coefficient (2.7 mm), and amplitude contrast ratio

Figure 6: Distribution of projection directions (PDs, shown as red points) as arranged across
the space of all possible viewing-angles (S2 sphere). This tessellation was achieved by form-
ing an icosahedron with 48 segments in Cinema4D30 to create 812 evenly spaced vertices
(with edges seen in black) representing a set of available PDs. Next, the Cartesian coor-
dinates of each of these vertices were transformed into spherical coordinates with in-plane
rotation set to zero. Given this tessellation, each vertex (PD) is approximately 6° from its
nearest neighbor. A quaternion transformation was next performed on each of these coordi-
nates (see Supplementary Material) to emulate small, random angular perturbations about
each PD. Importantly, these perturbations are designed to reproduce the naturally-occurring
orientational variations of a real experiment.
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(0.1) to emulate typical electron microscopy parameters. Positional x and y shifts were set

to zero so as to avoid application of image padding artifacts during re-centering (a problem

that does not exist for experimental data taken from micrographs). Ultimately, each of

these 812 rows represents the collection of information required to form a unique, virtually

accurate cryo-EM snapshot as taken from a given orientational direction of its corresponding

Coulomb potential map. In total, the rows of these alignment files provide the instructions

for creating 812,000 (812×1000) snapshots taken across all combinations of orientations and

conformations throughout our entire ensemble.

We next provided this collection of information as inputs into RELION’s 2D projection

module (relion_project). This operation created a 3D Fourier transform of each volume

from which 812 2D central sections were selected (with interpolation) and multiplied with the

corresponding CTF before being transformed back into real space.29 In this way, a unique 2D

projection was obtained for each combination of Euler angles in the corresponding alignment

file row. In all, this procedure resulted in the creation of 812 unique 2D images for each of our

1000 volumes, with this information stored in 1000 image stacks (MRC format) (Figure 10).

Next, all 1000 image stacks (i.e., one from each volume) were combined into one single

image stack while adding Gaussian noise to each image individually such that its signal-

to-noise ratio (SNR) became 0.1. This value has been previously established as a suitable

approximation for experimental SNR in images obtained by cryo-EM, and can be attributed

to the low contrast between macromolecules and their surrounding ice, as well as the limited

electron dose required to avoid radiation damage.31,32 We define this ratio by the division of

the image’s variance in signal (σ2
signal) by its variance in noise (σ2

noise).4 Here, signal represents

the 2D region of pixels corresponding to the average area occupied by the protein, obtained

by masking out all pixels within 0.5 standard deviations of each image’s mean intensity value

corresponding to the approximately uniform-intensity background.

This process was thus performed by first finding the mean pixel intensity (µsignal) and

variance (σ2
signal) of the signal, and calculating σ2

noise = σ2
signal / 0.1. Using these statistics, we
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then apply additive Gaussian noise to each image in order to obtain an output image having

the desired SNR. During this process, a sample from the Gaussian distribution, generated

with NumPy33 via numpy.random.normal(µsignal, σnoise, (rows, columns)), is added to each

pixel’s intensity. Each resulting image was then normalized such that the average pixel

intensity and standard deviation of pixel intensities was approximately 0 and 1, respectively.

Next, mrcfile34 was used to combine all images into a single image stack (Figure 7). Finally,

a single alignment file was produced containing the original parameters for each of the 812,000

images within the image stack.

Figure 7: Small selection of images as obtained from the tail end of the final MRCS image
stack (within the region of state 20_20). Each image was uniquely normalized after applying
additive Gaussian noise with SNR = 0.1.
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Conclusion

An ensemble of projections of the Hsp90 protein undergoing quasi-continuous conformational

changes has been provided as an exemplary ground-truth model for exploring the accuracy

and appropriateness of techniques claiming to specialize in the reconstruction of structure

and function from cryo-EM data. Along with this publicly-available dataset, we have pro-

vided a workflow for generating cryo-EM simulated data from atomic models subjected to

user-defined conformational changes. This workflow can be completely customized to meet

the needs of the user, including choice of atomic model, number and types of conforma-

tional motions, density and distribution of states, energetics of state space, distribution of

projection directions, microscopy parameters and noise. This flexibility will facilitate a com-

prehensive investigation of external data-analytic techniques, highlighting the performance

and limitations of these approaches under a number of complex conditions for which the user

has absolute control. All scripts for reproducing and customizing this workflow have been

made available online.1
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Supporting Information Available

Figure 8: RMSD (via PyMOL’s ‘rms_cur’ command) of all combinations of atomic structures
(PDBs) in the state space. The indices (1, 2, ..., 400) represent a sequential ordering along
the columns in the 20×20 CM1-CM2 state space, whereby index 1 corresponds to state
01_01, index 2 to state 01_02, and index 21 to state 02_01. Further, the entries in this
400×400 RMSD matrix provide a quantitative measure of similarity between every pair of
3D protein structures - effectively representing the ground-truth distance matrix for the
continuum. Two unique patterns consisting of diagonal-pinstripes and square-boxes can be
readily identified within the matrix and correspond to CM1 and CM2, respectively. The
smallest distance between structures is 0.64 Å and occurs between adjacent CM2 states
(e.g., the RMSD between state 01_01 and state 01_02). The largest distance is 20.44 Å
and occurs between state 01_01 and state 20_20.
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Figure 9: 1D distribution of occupancies for all 400 states as projected onto CM1 and CM2.
This occupancy distribution has been formulated such that in 1D, both conformational
motions are easily distinguishable. Namely, CM1 and CM2 have a modal and bimodal
distribution, respectively, whereby CM2 has also been given a wider range of occupancy
values.
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Figure 10: Comparison of state 20_20’s image stack with and without applied defocus
values (left and right side, respectively) using RELION’s project command. Note that the
combination of defocus values range and window size (250 pixels) was chosen so as not to
lose information scattered due to the ripples of the point spread function into the regions
outside of each image’s borders.
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PD Rotations: Each small, random angular-perturbation about each image’s correspond-

ing PD was performed via two sequential quaternion transformations. These transformations

were designed to preserve uniform rates of angular changes for all images across the S2 sphere

(Figure 11A). First, the initial combination of Euler angles for a given image’s corresponding

PD (Figure 6) was transformed into an equivalent unit vector v0 = (v0x , v0y , v0z). Next,

a unit vector, w = (wx, wy, wz), orthogonal to v0, was generated. A unit quaternion was

generated to represent a rotation about the axis w by an angle θ1 as follows:

q1 = cos(θ1/2) + wxsin(θ1/2)i+ wysin(θ1/2)j + wzsin(θ1/2)k

The rotation angle θ1 for each image was chosen from a random Gaussian distribution with

zero mean (center of the PD) and a standard deviation of 1.25°. The vector v0 was then

rotated according to v1 = q1 · v0 · q1
−1, which effectively rotated the vector v0 radially

outward from its original location (PD center) on a great circle, spanning a range of approx-

imately 6° on the S2 sphere. Next, v1 was randomly rotated by a second unit quaternion

with axis of the PD’s original location, v0, by θ2.

q2 = cos(θ2/2) + v0xsin(θ2/2)i+ v0ysin(θ2/2)j + v0zsin(θ2/2)k

The angle θ2 was chosen randomly from a uniform distribution between −180° and 180°

for each image, such that the initial Gaussian distribution across each PD (formed from

numerous possible random samples of v1 locations for each image) was transformed into

an isotropic Gaussian distribution about the center of each PD (Figure 12). This second

transformation, v2 = q2 · v1 · q2
−1, defined the final vector for each image, which was

subsequently converted into its corresponding Euler angle representation.
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Figure 11: Figure 11A schematizes the problem of applying global rotations to all PDs,
which results in a non-uniform angular distribution on the S2 sphere. The original PD
locations are represented by red vertices, while two oppositely-directed global rotations are
shown as blue and green vertices. As can be seen, the distribution of changes of blue and
green vertices about each corresponding red vertex are non-uniform, and vanishes near the
poles formed by the axis of rotation. Figure 11B presents a schematic of the effects of the
back-to-back quaternion transformations, resulting in a uniform distribution on the entire S2
sphere. In this example, the first quaternion transformation rotates each point radially away
from its PD center by an equal amount (θ1= π

15
), while the second quaternion transformation

incrementally rotates those points (θ2+=π
8
) along a circle enclosing the original PD with

angular radius θ1.
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Figure 12: The final distribution of all 812,000 images on the S2 sphere after the back-to-back
quaternion transformations with randomized sampling of θ1 and θ2 for each image. As can
be seen, the Gaussian distribution defining the radial distance of the first transformation has
been chosen such that little overlap occurs between the locations of images in neighboring
PDs. This ensures that the energy landscape within each PD is locally conserved, such that
both global-manifold and multiple-manifold (per PD) approaches can directly compare their
algorithm’s analysis to the ground-truth energetics.
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