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ABSTRACT

Non-coding DNA encodes complex cis-regulatory mechanisms that govern gene
expression by orchestrating transcription factor binding within specific sequence
contexts. While deep learning has advanced our understanding of these mecha-
nisms, how genetic variation reconfigures them remains an open challenge. Here,
we introduce SEAM, an AI-driven tool that systematically investigates how mu-
tations reshape regulatory mechanisms. By mapping sequences into a mechanism
space and clustering them based on shared features, SEAM reveals how specific
mutations can reprogram regulatory DNA, driving mechanistic and functional di-
versity. SEAM highlights the remarkable evolvability of human regulatory el-
ements, disentangles transcription factor-specific effects from broader sequence
context, and provides a powerful framework for decoding the cis-regulatory code.
By enabling systematic, unbiased exploration of reprogrammable mechanisms,
SEAM illuminates evolutionary pathways and informs the rational design of syn-
thetic sequences with tailored functions.

1 BACKGROUND

Deciphering how DNA sequences encode cis-regulatory mechanisms is a central challenge in biol-
ogy. Cis-regulatory elements orchestrate gene expression by integrating multiple signals, including
transcription factor binding sites (TFBS) and broader sequence context (Banerji et al., 1981; Spitz
& Furlong, 2012; Rickels & Shilatifard, 2018). Features such as nucleotide composition, motif
spacing, chromatin state, and sequence context collectively influence TFBS specificity, competition,
and cooperativity (Barash et al., 2010; Shlyueva et al., 2014; Nagy & Nagy, 2020). Together, these
elements form the cis-regulatory code, governing gene regulation across biological contexts.

Regulatory sequences evolve under selective pressures and genetic drift, with mutations altering TF
binding, competitive landscapes, and TF interactions, leading to regulatory rewiring (Crutchfield &
van Nimwegen, 2002; Levine, 2010). Understanding how genetic variation reshapes cis-regulatory
mechanisms is crucial for linking genotype to phenotype, uncovering disease mechanisms, and de-
signing synthetic sequences. However, existing tools struggle to systematically map the functional
consequences of such mutations.

Deep neural networks (DNNs) have enabled accurate predictions of regulatory activity from DNA
sequences (Zou et al., 2019; Koumakis, 2020; Avsec et al., 2021a;b). Post hoc explainability meth-
ods, such as attribution methods (Koo & Ploenzke, 2020; Novakovsky et al., 2022), assign impor-
tance scores to nucleotides, offering insights into motifs, syntax, and broader sequence integration
(Zhou & Troyanskaya, 2015; de Almeida et al., 2022; Novakovsky et al., 2022). Experimental stud-
ies have validated attribution-based insights, yet existing approaches remain limited to analyzing
individual sequences and lack a systematic framework to explore how mutations reconfigure regu-
latory mechanisms.

Here, we introduce SEAM (Systematic Explanation of Attribution-based Mechanisms), a compu-
tational framework leveraging deep learning to systematically investigate how mutations reshape
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cis-regulatory mechanisms. SEAM maps regulatory sequences into a “mechanism space”, cluster-
ing sequences based on shared regulatory logic through the lens of a DNN. This approach resolves
complex attribution patterns, disentangles motif- and context-specific signals, and reveals key muta-
tions driving mechanistic reprogramming. Applied to human and fly regulatory sequences, SEAM
uncovers functional diversity and evolutionary pathways shaping regulatory DNA. SEAM provides
a powerful platform for dissecting regulatory genomics, evolution, and disease.

2 SEAM: A FRAMEWORK FOR EXPLORING CIS-REGULATORY MECHANISMS

The sequence space of regulatory DNA is vast, with an astronomical number of possible mutations.
Exhaustively sampling this space is computationally infeasible. To address this, SEAM employs
partial random mutagenesis, introducing small, independent mutations to generate a synthetic li-
brary of variants. A trained sequence-to-activity DNN then maps each sequence to a “mechanism
space” using an attribution method. SEAM clusters these mechanisms to reveal distinct regulatory
strategies, while further sequence analysis within each cluster identifies shared mutations driving
mechanistic shifts (Fig. 1a).

SEAM produces three key outputs: (1) the set of mechanisms for each cluster, including the assign-
ment of each sequence to its respective cluster, revealing shared regulatory logic; (2) the predicted
activity distribution for each cluster, summarizing functional variation introduced by mutations; and
(3) the Mechanism Summary Matrix (MSM), a unique feature of SEAM that highlights sequence
variations relative to the wild-type sequence. The MSM provides insights into shared mutations
within clusters and identifies positions tolerant to genetic variation, offering a detailed view of how
sequence variation influences regulatory mechanisms. Together, these outputs form a comprehen-
sive toolkit for exploring the cis-regulatory rules driving functional and mechanistic diversity within
regulatory DNA.

SEAM is a versatile framework that can be customized for different regulatory genomics ap-
plications by varying sequence libraries, attribution methods, and clustering strategies. In this
study, SEAM primarily focused on “local” sequence libraries, described above, where 1–10%
of nucleotides in each sequence were randomly altered. Attribution maps were generated using
DeepSHAP (Lundberg & Lee, 2017), and hierarchical clustering (Ward, 1963) was applied to group
sequences by shared attribution-based mechanisms (see Methods).

3 SEAM DISSECTS COMPLEX CIS-REGULATORY MECHANISMS

To demonstrate SEAM’s ability to resolve regulatory mechanisms, we first applied it to Deep-
STARR, a sequence-to-activity DNN trained to predict enhancer activity in Drosophila S2 cells
(de Almeida et al., 2022). DeepSTARR has uncovered key cis-regulatory principles, such as TFBS-
flanking dependencies and distance-dependent cooperative interactions, through attribution maps
and in silico perturbations, with select mechanisms validated experimentally (de Almeida et al.,
2022; Reiter et al., 2023). However, many attribution maps remain ambiguous, displaying diffuse
signals or dense attribution clusters that obscure TFBS identification. Some enhancers exhibit tightly
packed motifs (Fig. 1d), while others show weakly attributed regions that may correspond to low-
affinity binding sites.

SEAM clarifies these complex patterns by applying partial random mutagenesis with a 10% local
mutation rate, decomposing mechanisms into distinct subsets. Clustered attribution maps, visual-
ized as sequence logos, provide higher-resolution views of functional motifs (Fig. 1e). SEAM’s
Mechanism Summary Matrix (MSM) further separates motifs across clusters (Fig. 1b), enabling
precise segmentation of functional components (gray overlays in Fig. 1e). Covariance analysis of
the MSM reveals combinatorial TFBS preferences across mechanisms (Fig. 1c). Notably, weak at-
tribution patterns consistently reappear within specific clusters, supporting their role as biologically
meaningful features, such as low-affinity binding sites.

SEAM’s robustness was confirmed across multiple workflow variations, including hierarchical clus-
tering parameters (Appendix Fig. 1), clustering algorithms (Appendix Fig. 2), mutation rates, library
sizes (Appendix Fig. 3), and attribution methods (Appendix Fig. 4). These results establish SEAM
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Figure 1: Overview of SEAM. a, Schematic of the SEAM meta-explainability framework. b,
MSM based on positional Shannon entropy for a fly enhancer using DeepSTARR’s Hk head, with
median DNN prediction (right, bar plot) for each cluster. c, Heat map of the MSM covariance
matrix highlights cooperative and competitive preferences between motifs. d,e, Sequence logos of
the initial attribution map computed from the WT sequence (d) and the average of attribution maps
in each cluster (e). Vertical gray bars represent the positions of entropy-based patterns in the MSM.

as a powerful tool for resolving regulatory motifs and mechanisms by leveraging counterfactual
insights through sequence perturbations.

4 SEAM DISENTANGLES MOTIF- AND CONTEXT-DEPENDENT REGULATORY
SIGNALS

We next applied SEAM to ChromBPNet, a sequence-to-activity DNN trained to predict chromatin
accessibility from ATAC-seq data in THP-1 human cells (Brennan et al., 2022). The PPIF promoter,
previously validated by VariantFlowFISH (Martyn et al., 2023), served as an ideal testbed. Us-
ing a 10% local mutagenesis library, SEAM uncovered diverse regulatory mechanisms, identifying
distinct motif combinations across multiple clusters.

A key advantage of SEAM is its ability to disentangle TF-dependent signals—highly sensitive to
mutagenesis—from context-specific signals, which remain robust to perturbation (see Methods).
context-specific signals predominantly reflect diffuse, low-attribution patterns associated with GC
content (Fig. 2a). Subtracting these signals from wild-type attribution maps sharpens and isolates
TF motifs. Cluster-averaged attribution maps further denoise these motifs (Fig. 2b). For example, an
NRF1 motif—previously obscured by GC-rich background—became clearly visible after SEAM’s
disentanglement (cl.80, Fig. 2b).

SEAM’s findings were robust across ChromBPNet models trained on different data subsets and mu-
tation rates (Appendix Fig. 5). Interestingly, context-specific signals varied substantially across loci
and biological systems. For instance, Drosophila enhancers analyzed with DeepSTARR exhibited
A/T-rich context-specific signals (Appendix Fig. 6), consistent with their known role as TF anten-
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nas (Castellanos et al., 2020). These results highlight SEAM’s ability to isolate regulatory signals,
providing deeper insights into TF and context-specific mechanisms that shape cis-regulatory code.

5 REGULATORY SEQUENCES ARE EVOLVABLE FOR DIVERSE
CIS-REGULATORY MECHANISMS

SEAM also reveals how minimal mutations can unlock new regulatory functions. Using a 1% mu-
tagenesis library, we applied SEAM to CLIPNET, a sequence-to-activity DNN trained to predict
PRO-cap-seq profiles in human lymphoblastoid cells (He & Danko, 2024). We focused on the
PIK3R3 promoter, a highly polymorphic locus (Gupta et al., 2020) linked to cancer (Zhou et al.,
2012), to investigate how sequence variants regulate transcription initiation.

SEAM identified clusters with diverse transcriptional activities near wild-type levels (Fig. 2d), each
predominantly driven by a common single-nucleotide mutation (Fig. 2c). For example, loss-of-
function mechanisms emerged from a zinc finger motif near the transcription initiation site (cl.A,
Fig. 2c,d,e), while conserved motifs like IRF, potentially under balancing selection, remained shared
across clusters (Fig. 2e). SEAM also uncovered small mutation combinations that created new
binding sites, such as a pairwise mutation forming a CAAT box (cl.C, Fig. 2c,e), which upregu-
lated transcriptional activity (Fig. 2d) and reversed transcription direction (Fig. 2f). These results
highlight the high evolvability of the PIK3R3 promoter, where specific mutations drive regulatory
reprogramming, potentially contributing to disease predisposition.

To test the generality of these findings, we applied SEAM to ProCapNet (Cochran et al., 2024),
another DNN predicting PRO-cap-seq profiles. At the MYC promoter, SEAM uncovered cryptic
transcription start sites (TSSs), including a previously reported antisense TSS (cl.A, Appendix Fig.
7b), as well as novel cryptic motifs—such as alternate TATA and BRE/SP sites—that either relo-

Figure 2: SEAM captures diverse mechanisms using versatile sequence libraries. a, Attribu-
tion logos for wild-type (WT) sequence, intra-cluster averaged backgrounds (BG), and WT se-
quence with background subtracted. Matched JASPAR motifs shown below. b, Representative
meta-attribution maps for background adjusted clusters (cl). c, MSM for the PIK3R3 promoter, cen-
tered at the TSS, colored by percent mismatches to the WT sequence for each of the 200 clusters. d,
DNN predictions for each cluster in the MSM. e, Background adjusted attribution maps for different
clusters. f, profile predictions for a cryptic CAAT box in cluster C, where different perturbations
(shown in red) were applied, highlighting changes in direction of transcription.
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cated or reversed TSS direction (cl.E, Appendix Fig. 7b). Similarly, SEAM applied to DeepSTARR
identified fly enhancer mutations that converted an activating AP-1 motif into a TTK repressor bind-
ing site, suppressing enhancer activity (cl.A, Appendix Fig. 8a). Another pairwise mutation shifted
an AP-1 motif three nucleotides without significantly altering activity (cl.B, Appendix Fig. 8a).
These results highlight the remarkable plasticity of cis-regulatory elements, where small mutations
can reprogram regulatory sequences to drive diverse mechanisms and functional outcomes. This
adaptability has profound implications for evolutionary biology and complex disease studies.

6 SEAM GENERALIZES ACROSS DIVERSE SEQUENCE LIBRARIES

SEAM is a versatile framework that generalizes across diverse sequence libraries, providing a uni-
fying approach to decoding regulatory logic. Applying SEAM to combinatorial-complete libraries
derived from experiments, such as Protein Binding Microarrays (PBMs), revealed both primary and
secondary binding motifs for ZFP187, capturing previously-validated patterns while also uncover-
ing insights into lower-affinity mechanisms (Appendix Fig. 9a,b). In group-optimized libraries,
we developed Redirected Evolution (REVO), a motif-centric extension of in silico evolution (ISE),
to enhance mechanistic diversity in regulatory design (see Methods). SEAM applied to REVO-
optimized DeepMEL2 libraries revealed a broader range of motif types and regulatory mechanisms
compared to standard ISE (Appendix Fig. 9c). Finally, in global libraries (see Methods), SEAM
identified context-specific regulatory mechanisms in fly enhancers, including mutations that repro-
gram CREB/ATF binding sites into AP-1, GATA, or C2H2 zinc finger motifs with distinct functional
consequences (Appendix Fig. 9d). These results demonstrate SEAM’s adaptability across computa-
tional and experimental contexts, enabling deeper insights into cis-regulatory mechanisms.

7 DISCUSSION

SEAM represents a transformative advancement in understanding the cis-regulatory code, offering
a scalable framework for extracting regulatory insights from attribution maps. Attribution maps tra-
ditionally highlight nucleotide importance in model predictions but are often constrained by noise,
ambiguity, and an inability to capture broader regulatory logic. SEAM overcomes these limitations
by systematically perturbing DNA sequences, clustering the resulting attribution maps, and gener-
ating meta-attribution maps that distill shared regulatory patterns. This approach transforms diffuse
single-sequence analyses into structured, interpretable summaries, revealing critical insights into the
cis-regulatory grammar that governs gene expression.

Unlike hypothesis-driven tools that catalog motifs from observed genomic data, SEAM is discovery-
driven, systematically probing mutational landscapes to uncover novel regulatory mechanisms and
interactions. By leveraging synthetic sequence libraries, SEAM reveals how genetic variation re-
shapes the cis-regulatory code, uncovering both motif- and context-specific mechanisms. This unbi-
ased exploration provides a comprehensive understanding of regulatory complexity and highlights
how small mutations can drive significant regulatory changes.

A defining strength of SEAM lies in its ability to disentangle motif-dependent and context-specific
mechanisms, two fundamental drivers of regulatory activity. While motif-dependent mechanisms
tied to well-characterized TFBS are well-understood, SEAM reveals context-specific signals—
diffuse patterns often dismissed as noise—as critical modulators of regulatory outcomes. By isolat-
ing these features, SEAM uncovers previously hidden layers of complexity, advancing our under-
standing of how DNA sequences encode functional diversity and fine-tune gene regulation.

SEAM also highlights the remarkable evolvability of regulatory sequences, demonstrating how min-
imal sets of mutations can reprogram motifs, reverse transcriptional direction, or activate new path-
ways. For instance, at the PIK3R3 promoter, small sequence changes preserved overall function
while enabling diverse regulatory mechanisms. These findings underscore how regulatory elements
balance robustness with flexibility, supporting phenotypic diversity and evolutionary innovation.

By systematically exploring sequence variants, SEAM maps mutational landscapes through the lens
of mechanisms learned by a DNN. This provides a powerful framework for understanding gene
regulation and rationally designing synthetic sequences with precision, advancing applications in
synthetic biology, precision medicine, and functional genomics.
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A APPENDIX

METHODS

THE SEAM FRAMEWORK.

SEAM takes as input a sequence of interest, a specified attribution method, a clustering method, and
a sequence-function oracle.

• Mutagenizer. An in silico sequence dataset is generated by sampling a library of N se-
quences using random partial mutagenesis of a sequence of interest. We modulate the size
of the sequence-space region from which this library is drawn using two hyperparameters:
the sequence that defines the region of interest, which has length L, and the mutation rate
r. The resulting number of mutations in each individual sequence is a Poisson distributed
random variable having mean Lr. The Mutagenizer class contains objects that apply the
chosen mutagenesis strategy.

• Attributer. An attribution method is used to compute the attribution map for each sequence
in the in silico sequence library.

• Clusterer. The N attribution maps are directly clustered or first embedded in a low-
dimension space and then clustered.

• MetaExplainer. Attribution maps within each cluster are averaged to form meta-attribution
maps representing a noise-reduced consensus of each mechanism. Sequence-function and
sequence-mechanism relationships are compiled using the sequence and function statistics
associated with attribution maps in each cluster. Sequence-mechanism relationships are
further used for delimiting the positions of individual motifs and background separation.

ATTRIBUTION METHODS

Our analyses used attribution maps computed using a variety of methods, implemented as follows.

• In Silico Mutagenesis (ISM) scores were computed by evaluating the change in the scalar
DNN prediction from the wild type prediction for every single nucleotide variant of the
sequence of interest (Zhou & Troyanskaya, 2015).

• Empirical Mutagenesis scores were computed similarly to ISM scores, using experimental
measurements in place of DNN predictions. In the case of PBM data, for every sequence in
the combinatorial-complete library, SEAM generates an empirical mutagenesis map using
the log2 fold change between the E scores of the reference sequence and a single nucleotide
variant.

• Saliency Maps scores were computed by evaluating the gradient of the scalar DNN pre-
diction at the sequence of interest with respect to the one-hot encoding of that sequence
(Simonyan et al., 2014).

• SmoothGrad scores were computed by averaging Saliency Maps over 50 noisy encodings
of the sequence of interest. Each noisy encoding was computed by adding Gaussian noise
(mean zero, standard deviation 0.25) to each of the 4L matrix elements of the one-hot
encoding for the sequence of interest (Smilkov et al., 2017).

• Integrated Gradients (IntGrad) scores were computed by interpolating between a baseline
reference sequence and the sequence of interest. The gradient of the DNN’s scalar pre-
diction is integrated along the interpolated path, and the resulting attributions reflect the
cumulative contribution of each nucleotide to the prediction (Sundararajan et al., 2017).

• DeepSHAP scores were computed by using a background set of reference sequences and
evaluating the contribution of each nucleotide at each position by comparing the DNN’s
activations for the sequence of interest to its activations for the background (Lundberg &
Lee, 2017). DeepSHAP hyperparameters were chosen to match those used in each DNN’s
original publication.
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CLUSTERING METHODS

Our analyses used methods to generate clusters that were assigned directly on a distance matrix or
indirectly on an embedded space.

• Hierarchical clustering was applied with Ward’s linkage on the Euclidean distance matrix
(Ward, 1963), computed directly from the attribution maps library. Ward’s method min-
imizes the total within-cluster variance by iteratively merging clusters, which results in a
hierarchical tree (dendrogram) that groups attribution maps based on their similarity in the
original feature space. We cut the dendrogram at a defined level to select a specific number
of highest-level clusters.

• Alternative to the direct clustering of attribution maps, SEAM can embed attribution maps
before clustering them. For this purpose, PCA (Pearson, 1901), t-SNE (van der Maaten &
Hinton, 2008), and UMAP (McInnes et al., 2020) embedding is currently integrated within
the SEAM framework, with k-means (Lloyd, 1982) and DBSCAN (Ester et al., 1996) used
for subsequent clustering on the embedded space (i.e., Appendix Fig. 2; Appendix Fig. 9d).

The number of clusters should be chosen based on the objective of the analysis. For building bio-
physical state models, the number of TFBSs, T , present at a locus informs the number of biophysical
states, 2T , and thus the number of clusters. For other studies, initially using a large cluster number
may be advantageous to assess the overall amount and placement of mechanistic variation at a locus
using the SEAM variability logo (e.g., Appendix Fig. 1). After this assessment, the number of clus-
ters can be scaled down to focus on specific aspects of the dataset. In general, the number of clusters
should not be so low that a cluster with zero entropy across all positions appears in the MSM.

BACKGROUND SEPARATION ANALYSIS

When using a local library, an approximately uniform set of backgrounds emerges in the attribution
maps across all sequences. As the SEAM-derived Mechanism Summary Matrix (MSM), based on
positional Shannon entropy, captures the sequence determinants driving TF motif activity per cluster,
SEAM uses this information to separate the common background signal from TF-dependent motifs
in each cluster. First, the background entropy of the sequence library is calculated using the mutation
rate, r, used to generate the library, and the corresponding probability, p, of a position remaining
unchanged, where p = 1 − r. For a sequence with c nucleotides, the background entropy, HBG, is
calculated as the entropy of the following distribution:

HBG = −p · log2(p)− (1− p) · log2
(
1− p

c− 1

)
Next, an entropy threshold H0 = HBG/2 is set. For each averaged attribution map of a given cluster,
indexed by k, the attribution values are set to zero for positions i in the associated row of the MSM
where the positional sequence entropy is less than the threshold entropy, Hk,i < H0. Repeating this
operation across all clusters and averaging the result effectively captures the attribution background,
while reintegrating background attribution values that were removed from each cluster based on the
presence of cluster-specific TF motifs. Finally, the averaged attribution background is subtracted
from each of the averaged attribution maps per cluster. Within a local library, the background is
uniform up to a constant scaling factor. To avoid introducing excess background signal due to mis-
matched amplitudes, an additional per-cluster scaling factor is applied to the background before
the background is subtracted. Subtraction isolates cluster-specific TF motifs by removing common
background signals, thereby enhancing the specificity of the attribution maps for TF-dependent mo-
tifs within each cluster.

DEEP LEARNING MODELS

This study used five DNNs: DeepSTARR, CLIPNET, ProCapNet, ChromBPNet, and DeepMEL2.
Here, we briefly describe each DNN and how that DNN was used in our study to compute attribution
maps.

• DeepSTARR (de Almeida et al., 2022) predicts Drosophila enhancer activity as assayed
by UMI-STARR-seq. DeepSTARR takes as input a DNA sequence of length 249 nt and
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outputs two scalar-valued predictions for enhancer activity for developmental (Dev) and
housekeeping (Hk) regulatory programs. The DeepSTARR parameters were retrained in
TensorFlow as specified in the original release, and the resulting model was confirmed to
recapitulate the published model using performance metrics and visualization of attribution
maps.

• CLIPNET (He & Danko, 2024) predicts nucleotide-resolution transcription initiation pro-
files from a dataset consisting of matched precision run-on and 5’-capped (m7G) RNA
enrichment (PRO-cap) and individual heterozygous human genomes from 58 genetically
distinct lymphoblastoid cell lines (LCLs). CLIPNET takes as input a DNA sequence of
length 1,000 nt and outputs two predictions via a “profile” head and a “counts” head. The
profile head predicts strand-specific PRO-cap coverage over the central 500 nt (500 for the
plus strand concatenated with 500 for the minus strand), representing the predicted base-
resolution profile of initiation. The counts head predicts the total PRO-cap signal across
both strands. CLIPNET is an ensemble model comprising 9 structurally identical mod-
els, each trained with a distinct holdout set of chromosomes. Unless otherwise specified,
SEAM analysis was performed by averaging predictions and attribution maps across all
9 folds. Attribution analysis in CLIPNET was conducted on two-hot encoded DNA se-
quences, where each nucleotide at a given position is represented as a sum of two one-hot
encoded nucleotides, capturing the unphased diploid sequence. When applying DeepSHAP
to two-hot encoded sequences, heterozygous positions can be seen as vectors between the
two orthogonal features (alleles) in the input domain. DeepSHAP evaluates the function’s
behavior at this new composite point, reflecting the model’s interpretation of the combined
contribution from both alleles.

• ProCapNet (Cochran et al., 2024) predicts nucleotide-resolution transcription initiation
profiles as measured by PRO-cap in human K562 cells. ProCapNet takes as input a ho-
mozygous DNA sequence of length 2,114 nt and generates two predictions via a profile
head and a counts head. The profile head predicts nucleotide-resolution initiation activ-
ity across both strands within a central 1,000 nt region, while the counts head predicts
the log-transformed total number of PRO-cap reads with 5’ ends mapped within this re-
gion, summed across both strands. ProCapNet was trained using a 7-fold cross-validation
scheme. Unless otherwise specified, SEAM analysis was performed by averaging predic-
tions and attribution maps across all 7 folds. Profile head predictions were consolidated
into a single explainable scalar following the approach used in the original publication.

• ChromBPNet (Brennan et al., 2022) predicts nucleotide-resolution chromatin accessibility
profiles as measured by ATAC-seq in THP-1 cells. ChromBPNet takes as input a DNA se-
quence of length 2,048 nt and generates two predictions via a “profile” head and a “counts”
head. The profile head predicts nucleotide-resolution ATAC-seq coverage within a central
1,000 nt region, while counts head predicts the natural log count of the aligned reads within
this region. ChromBPNet was trained using a 5-fold cross-validation scheme. Unless oth-
erwise specified, SEAM analysis was performed by averaging predictions and attribution
maps across all 5 folds. Profile head predictions were consolidated into a single explainable
scalar following the approach used in the original publication. The version of ChromBPNet
used in this work is available at 10.5281/zenodo.10403551.

• DeepMEL2 (Taskiran et al., 2024) predicts melanoma-specific chromatin accessibility as
measured by ATAC-seq and allele-specific chromatin accessibility variants (ASCAVs).
DeepMEL2 takes as input the forward and reverse DNA strands, each of length 500 nt, and
outputs a vector of binarized predictions across 47 classes, each representing a melanoma
cis-regulatory topic. Only class 16 (MEL) was used in this work. Contribution scores were
generated for each strand separately, and following previous work (Taskiran et al., 2024),
we averaged the contribution scores over both strands to visualize attribution maps.

SEQUENCE DESIGN METHODS

SEAM is a versatile framework that can be applied on a diversity of sequence libraries.

• Local libary. Random partial mutagenesis is applied to a genomic sequence of interest. The
number of mutations in each individual sequence is a Poisson distributed random variable
having mean Lr, where L is the sequence length and r is the mutation rate.
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• Global library. Fixed genetic elements, such as putative TFBSs, are embedded at the same
position across a library of completely random sequences.

• Combinatorial-complete library. A set of sequences that includes all possible combinations
of nucleotides at specified positions, ensuring comprehensive coverage of sequence vari-
ation. In this analysis, SEAM was applied directly to experimental datasets that met this
requirement using empirical mutagenesis maps.

• Group-optimized library. In this study, we used REVO (see below) to generate a library of
heterozygous sequences anchored at a genomic sequence of interest. SEAM is not limited
to REVO, and other optimization strategies could also be tried (e.g., BEAM search or
genetic algorithms).

Our optimization methods evolved sequences by iteratively selecting mutations that maximize pre-
dictive changes in function.

• In silico evolution (ISE) is a hill-climbing algorithm that was adapted for DeepMEL2 op-
timization (de Boer et al., 2020). In the adapted protocol—called Evolved From Scratch
(Taskiran et al., 2024) and repeated in our analysis—ISE starts from a random, GC-adjusted
sequence. At each iteration of the evolution, represented by a partially mutated sequence,
saturation mutagenesis is performed to generate all possible SNVs. The SNV with the
highest positive change in prediction (for the selected class) is chosen. For the selected
sequence with one new mutation, saturation mutagenesis is recalculated, with this proce-
dure repeated until the initial random sequence accumulates t mutations. In their study
(Taskiran et al., 2024), ISE typically produced a single optimized sequence after 10-15
iterations whose predicted activity correlated with in vitro luciferase reporter results. Attri-
bution analysis showed that the optimized sequences corresponded to distinct mechanisms,
influenced by the starting sequence context.

• Redirected Evolution (REVO) is an extension of ISE (starting from a random, GC-adjusted
sequence) where in silico mutagenesis is performed using redirected evolution to identify
optimized modes in sequence-function space. At the end of one round of ISE, the attribu-
tion map for the final sequence, having t accumulated mutations, is generated. Windows
of length wl slide across the attribution map to determine the top wn non-overlapping re-
gions, ranked by the sum of max attribution values at each position in each window. ISE is
then rerun from the initial, random GC-corrected sequence in a branching structure, with
each branch corresponding to a combination of the wn regions, and the specified region(s)
protected from mutations during the subsequent t iterations. This process is repeated T
times, with redundant branches pruned in real time to mitigate computational repetition.
By intentionally blocking the optimization of previously discovered sequence elements,
this approach redirects the evolutionary process to explore new areas of sequence space,
promoting diversity and the discovery of new sequences. All N sequences are used as in-
puts to SEAM, with N indeterminate due to the unpredictable nature of pruning based on
repeated elements.

DATA AVAILABILITY

PBM data are available in the UniPROBE database (Newburger & Bulyk, 2008).

CODE AVAILABILITY

SEAM is an open-source Python package based on TensorFlow, and contains CPU and GPU op-
timized code for attribution analysis and clustering (Abadi et al., 2015). SEAM can be installed
via pip (https://pypi.org/project/seam-nn) or GitHub (https://github.com/
evanseitz/seam-nn). The GitHub repository contains links to running several examples
from our analysis in Google Colab. Documentation for SQUID is provided on ReadTheDocs
(https://seam-nn.readthedocs.io).
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APPENDIX FIGURES

Appendix Figure 1. Impact of maximum cluster number on SEAM mechanistic insights. a,
SEAM dendrogram for the DeepSTARR locus shown in Fig. 1, generated using hierarchical clus-
tering with Ward’s linkage on a Euclidean distance matrix. The pink horizontal line indicates the
cut level for selecting the 30 highest-level clusters. b, Median DNN predictions for the 30 (left) and
1000 (right) highest-level clusters. Both plots demonstrate that the clusters span a dynamic range
of DNN predictions, with finer granularity as the number of clusters increases. Lines represent the
upper and lower quartiles. c, Comparison of the WT map to the overlay of all average maps from
each cluster, as the maximum number of clusters increases from 10 to 1000. As seen with 500 and
1000 clusters, more mechanisms are identified. d, Examples of individual mechanisms obtained
using 1000 clusters, revealing new instances of TFBSs not observed at the other cut levels shown.
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Appendix Figure 2. Impact of clustering method on SEAM mechanistic insights. a, Compari-
son of SEAM embeddings of attribution maps for the DeepSTARR locus shown in Fig. 1, generated
using PCA, t-SNE, and UMAP. For each embedding, k-means was performed, resulting in 200 clus-
ters. For each set of clusters in each embedding, the position of an example cluster A is encircled,
corresponding to a mechanism with a highly similar visual appearance across all three embeddings.
b, Sequence logo for the mechanism corresponding to cluster A, generated by averaging the attribu-
tion maps in cluster A for each embedding. c, Comparison of MSMs, based on positional Shannon
entropy, for the three embeddings. The MSM created using hierarchical clustering, as shown in Fig.
1, is also shown for comparison. By visual inspection, PCA (using the two leading eigenvectors)
with k-means produces the MSM with the lowest-resolution features, while hierarchical clustering
produces the MSM with the highest-resolution features. Avg., average; Cl., cluster.
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Appendix Figure 3. Impact of hyperparemeters on SEAM mechanistic insights. Comparison of
SEAM outputs for the DeepSTARR locus shown in Fig. 1 as SEAM hyperparameters—including
the size of the sequence library, N , and the mutation rate, r, used to generate the library—are varied.
a, Comparison of SEAM variability logos (i.e., the overlay of all average attribution maps for 30
clusters generated by hierarchical clustering) as N is varied with a constant mutation rate, r = 0.10.
b, Comparison of the corresponding MSMs based on positional Shannon entropy. c, Comparison
of SEAM variability logos as r is varied with a constant library size, N = 100, 000 sequences. d,
Comparison of the corresponding MSMs based on positional Shannon entropy. By visual inspection,
SEAM outputs are robust to library size and rate of partial mutagenesis. Comparing the MSM shown
for N = 100, 000 and r = 0.10, which is a replicate of the MSM shown in Fig. 1 generated with a
different random mutagenesis seed, shows that SEAM outputs are also robust to random sequence
generation. Avg., average; Cls., clusters.
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Appendix Figure 4. Impact of attribution method on SEAM mechanistic insights. a, Com-
parison of wild-type attribution maps for the DeepSTARR locus shown in Fig. 1, generated us-
ing in silico mutagenesis (ISM), Saliency Maps, SmoothGrad, Integrated Gradients (IntGrad), and
DeepSHAP. Gray bars running vertically across the attribution maps align with entropy-biased re-
gions in the corresponding MSMs, below. b, MSMs based on positional Shannon entropy generated
by SEAM using different attribution methods for the same locus. Features in the MSM are consistent
across attribution method, and identify locations of important motifs that can be difficult to discern
in the wild-type map generated by each attribution method. c,d, Attribution maps and corresponding
SEAM MSMs for another locus obtained from the DeepSTARR test set (index 22612) using the Dev
head, with similar trends observed. Cl., cluster.
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Appendix Figure 5. Impact of ChromBPNet model fold and mutation rate on SEAM back-
ground separation. a, Examples of attribution maps for intra-mechanism background (top) and
foreground (bottom) for clusters 16 and 23. Intra-mechanism background is informed by the po-
sitional Shannon entropy over sequences in each cluster (middle). SEAM uses the thresholded
positional Shannon entropy to mask out TF-dependent attributions in each map. The foreground
attribution map is derived by subtracting the average attribution map of a given cluster from the av-
erage of all intra-mechanism background maps over all clusters. SEAM was run using the average
of attribution maps over all folds, with sequences sampled using a 10% mutation rate. b, Results
of running SEAM background separation independently on each of the first five ChromBPNet folds
(10% mutation rate). c, Results of independently running SEAM background separation on fold 1
using datasets generated with different mutation rates. Avg., average; BG, background.
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Appendix Figure 6. Background separation at a DeepSTARR enhancer. a, First row: WT
attribution map from a DeepSTARR enhancer (test set index 4071). A low-affinity DRE TFBS,
ATCGAG–with one mutation to the consensus TFBS, ATCGAT–is positioned near the center, re-
sulting in an overall low Hk expression (-0.49). Seemingly spurious scores across the attribution
map obscure the identification of TF motifs. Second row: Average attribution map for the WT clus-
ter, showing SEAM’s ability to denoise the WT mechanism by averaging over qualitatively similar
attribution maps. Third row: Average of all intra-cluster backgrounds separated by SEAM, featuring
AT-rich attribution signals across the enhancer. Fourth row: WT cluster after background removal,
generated by subtracting the average background (row 3) from the averaged WT mechanism (row 2).
Background separation reveals three previously obscured TF motifs. b, Standard deviation of attri-
bution values over clusters, highlighting the static nature of the background on which the TF motifs
reside across all clusters. c, Examples of background separation on other mechanisms discovered
by SEAM at the same locus, revealing previously obfuscated TF motifs in each cluster. Cluster 14
recovers a higher-affinity DRE/DRE motif compared to WT that is not necessitated by CREB on the
right-hand side. d, Attribution map was generated from the WT sequence after mutating the cen-
tral DRE TFBS to match the consensus motif ATCGAT, including optimized flanking nucleotides.
Compared to the WT, these 10 mutations increase Hk expression to 2.01, while substantially altering
the attributed background context across the enhancer (see insets). This example highlights the sen-
sitivity of background signals to coordinated mutations. WT, wild-type; Avg., average; Cl., cluster;
BG, background.
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Appendix Figure 7. SEAM analysis of mechanistic variation at ProCapNet MYC promoter. a,
Predicted profile and attribution map for the WT sequence, demonstrating the TF motifs and profile
peaks present, which are used for biased ablation experiments. b, Five (cl. A-E) of the 200 clusters
generated using SEAM. For each panel, the predicted profiles associated with the attribution maps in
the given cluster are overlaid on top, with the average of all attribution maps in the cluster displayed
on the bottom. In cluster A, SEAM finds a stronger version of the previously-documented weak
antisense initiator. In clusters B-D, SEAM finds previously-undiscovered weak antisense (cl. B) and
sense (cl. C, D) initiators. In cluster E, SEAM discovers an alternative TATA and BRE/SP TFBS
that substantially alters upstream and downstream attribution values, while reversing the direction of
transcription (pink rectangles). c, Overlay of all predicted profiles for all clusters (top) and overlay of
all average attribution maps per cluster (bottom). In this view, smeared motifs represent overlapping
mechanisms that can be finely tuned over a broad range based on sequence context. Avg., average;
Seq., sequence; Prof., profile.
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Appendix Figure 8. SEAM identifies key mutations that change mechanism. a, MSM based
on percent mismatches to wild type (WT) for a locus obtained from the DeepSTARR test set (in-
dex 22612) using the Dev head. In this representation, the influence of single nucleotide variations
(SNVs) at specific positions is shown to largely govern many of the qualitatively distinct mechanism
shifts away from the WT mechanism (cl. WT). Many of these SNVs drive the formation of poised
motifs that can significantly increase, decrease, or fine-tune enhancer activity. For example, the
SNV in cluster A effectively replaces the presence of the WT AP-1 motif with a poised TTK repres-
sor, significantly driving down enhancer activity. Pairwise mutations are also observed to govern
mechanism changes. As seen in cluster B, two mutations shift the wild-type AP-1 motif three nu-
cleotides to the right while fine-tuning enhancer activity. b, At another locus from the DeepSTARR
test set (index 22627) using the Hk head, SNVs predominantly create distinct conformations of a
central Ohler1 motif. These results demonstrate the diversity of cis-regulatory syntax discovered by
SEAM. Sequence logos for each averaged mechanism are colored based on deviations (gray) to the
wild-type sequence (orange). WT, wild-type.
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Appendix Figure 9. SEAM captures diverse mechanisms using versatile sequence libraries. a,
Left: Box plots showing E scores for each of the 200 clusters produced by SEAM from the PBM
ZFP187 dataset, ranked in ascending order by each cluster’s median E score. Letters A-F label ex-
ample clusters, with superscripts denoting reverse complements (*) or a register shift (rs). Right:
Number of empirical mutagenesis maps (occupancy) in each cluster. b, Top inset: Information
content sequence logos for the two alternative binding modes captured in the original PBM study
of ZFP187 using the Seed-and-Wobble algorithm. Bottom: Sequence logos of averaged empiri-
cal mutagenesis maps corresponding to the example SEAM clusters labeled in the previous panel.
c, Sequence design comparison of DeepMEL2 predicted activities for REVO designed sequences
versus in silico evolution of a starting sequence EFS-6 from the original analysis. d, Global anal-
ysis of CREB/ATF binding mechanisms using the sequence TNNTGAAAT (Dev head). Top left:
UMAP embedding of cropped attribution maps. Bottom left: Previously published TF-MoDISco
results, highlighting two distinct CREB/ATF motifs with 255 and 199 supporting seqlets, respec-
tively. Right: SEAM-derived meta-attribution maps and associated PWMs for encircled regions in
the UMAP embedding.

19



Published at the GEM workshop, ICLR 2025

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
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