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Supplementary Figure 1. SEAM entropy-based CSM patterns are consistent across genomic DNNs, data modalities,
and species. SEAM entropy-based cluster summary matrices (CSM) generated with SEAM using different genomic DNNs,
with each CSM computed based on a local library (10% mutation rate) corresponding to a unique reference sequence. a, CSM
for the Drosophila enhancer shown in Fig. 2b, generated using the DeepSTARR model with DeepSHAP attribution maps (using
the developmental head) and hierarchical clustering. Cyan rectangles highlight examples of motif-preserving signals that appear
outside of vertical bands, each corresponding to the emergence of a de novo motif for the respective cluster(s). b, CSM for
the human U2SURP exon 9, generated using the Splice Al model with Saliency attribution maps (using the max prediction at
the acceptor head; see Methods) and K-Means clustering on the UMAP embedding. ¢, CSM for the human PPIF promoter,
generated using the ChromBPNet model with DeepSHAP attribution maps (using the counts head) and hierarchical clustering.
d, CSM for the final trajectory from the Evolved from Scratch (EFS) sequence 17, generated using the DeepMEL2 model
with DeepSHAP attribution maps (using class 16) and K-Means clustering on the UMAP embedding. e, CSM for the human
PPIF enhancer, generated using the Enformer model with Saliency attribution maps (using all human DNase CD14-positive
profiles; see Methods) and K-Means clustering on the UMAP embedding. CSM clusters for DeepSTARR and ChromBPNet
examples are ordered by ascending DNN prediction. CSM clusters for SpliceAl, DeepMEL?2, and Enformer examples are
ordered according to entropy-similarity over positions (using hierarchical clustering) to better visualize entropy-based patterns.
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Supplementary Figure 2. SEAM covariance analysis annotates mutation-sensitive regulatory elements and quantifies
combinatorial logic. a, SEAM entropy-based CSM for the DeepSTARR locus shown in Fig. 2a. b, Covariance matrix of
the CSM, capturing how nucleotide positions co-vary in their entropy profiles across clusters (see “SEAM-based covariance
analysis” in Methods). For covariance analysis, SEAM applies a second, independent hierarchical clustering to the covariance
matrix (here cut into four groups corresponding to four regulatory motifs) to group together nucleotide positions that respond
jointly to sequence perturbation. Inset: covariance patterns also reveal co-occurrence trends between regulatory motifs across
mechanistically-defined clusters. ¢, CSM with low-entropy regions outlined in black, with the horizontal extent of each region
determined by the nucleotide groups from the covariance-based clustering, and the vertical boundaries defined by an entropy
threshold. d, Low-entropy regions within each black rectangle identified in the CSM are averaged and transformed into an
activity level for each TFBS, forming a binding configuration matrix. Magenta letters at the top of the binding configuration
matrix denote the position of example clusters in Fig. 2a. Some states appear as graded versions of others (e.g., Ohlerl in cluster
2 vs. cluster 6), reflecting contextual modulation of attribution amplitudes. e, The position of regulatory elements in each state
are combined with their activity in that state to highlight active motifs in the cluster-averaged attribution maps. Attribution
maps are cluster-averaged and background separated (see Methods). f, Pairwise epistatic interaction matrix computed using
Mbobius inversion (see “SEAM-based epistasis analysis” in Methods), using median DNN predictions corresponding to each
optimal match in the binding configuration matrix. g, Bar plot of higher-order epistatic effects for all combinations of regulatory
elements.
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Supplementary Figure 3. SEAM identifies driver mutations that reprogram regulatory mechanisms. a, Top: CSM
based on percent mismatches to the wild-type (WT) sequence for a locus from the DeepSTARR test set (index 21069), using the
developmental head. Specific single-nucleotide variants (SNVs) in the CSM (middle) are associated with distinct shifts away
from the WT mechanism—visualized by the average of attribution maps in each cluster (bottom)—often through the creation
of poised motifs that modulate enhancer activity. For example, SNVs in clusters A and B reveal alternative binding sites for
the repressor TTK that strongly or moderately repress activity, respectively. Not all driver mutations form de novo motifs; in
cluster D, a substitution at the central position of the AP-1 TFBS increases the overall importance of all nucleotides in the core
motif. b, CSM for a second locus from the DeepSTARR test set (index 22627), analyzed with the housekeeping head. Cluster F
reveals a poised DRE TFBS governed by two driver mutations that are associated with an increase in predicted activity, while
clusters A—E demonstrate fine-scale shifts in the conformation of a central Ohler]l motif, each driven by a distinct SN'V.
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Supplementary Figure 4. Impact of maximum cluster number on SEAM mechanistic insights. a, SEAM dendrogram
for the DeepSTARR locus shown in Fig. 2a, generated using hierarchical clustering with Ward’s linkage on a Euclidean distance
matrix. The pink horizontal line indicates the cut level for selecting the 30 highest-level clusters. b, Median DNN predictions
for the 30 (left) and 1000 (right) highest-level clusters. Both plots demonstrate that the clusters span a dynamic range of
DNN predictions, with finer granularity as the number of clusters increases. Lines represent the upper and lower quartiles. c,
Comparison of the wild-type (WT) map to the overlay of all average (avg.) maps from each cluster, as the maximum number
of clusters increases from 10 to 1000. As seen with 500 and 1000 clusters, more mechanisms are identified. d, Examples of
individual mechanisms obtained using 1000 clusters, revealing new instances of TFBSs not observed at the other cut levels
shown.
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Supplementary Figure 5. Impact of clustering method on SEAM mechanistic insights. a, Comparison of SEAM
embeddings of attribution maps for the DeepSTARR locus shown in Fig. 2a, generated using PCA, t-SNE, and UMAP. For each
embedding, K-means was performed with 200 clusters. For each set of clusters in each embedding, the position of an example
cluster (cl.A) is encircled, corresponding to a mechanism with a highly similar visual appearance across all three embeddings. b,
Sequence logo for the mechanism corresponding to cluster A, generated by averaging the attribution maps in cluster A for each
embedding (map avg.). ¢, Comparison of entropy-based CSMs for the three embeddings. The CSM created using hierarchical
clustering, as shown in Fig. 2a, is also shown for comparison. By visual inspection, PCA with K-means produces the CSM with
the lowest-resolution features, while hierarchical clustering produces the CSM with the highest-resolution features.
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Supplementary Figure 6. Impact of hyperparemeters on SEAM mechanistic insights. Comparison of SEAM outputs
for the DeepSTARR locus shown in Fig. 2a as SEAM hyperparameters are varied—including the size of the sequence library,
N, and the mutation rate, r, used to generate the library. a, Comparison of SEAM variability logos—generated via the
overlay of all average (avg.) attribution maps for 30 clusters (cls.) generated by hierarchical clustering—as N is varied
with a constant mutation rate, » = 0.10. b, Comparison of the corresponding CSMs based on positional Shannon entropy. ¢,
Comparison of SEAM variability logos as r is varied with a constant library size of N = 100,000 sequences. d, Comparison
of the corresponding entropy-based CSMs. By visual inspection, SEAM outputs are robust to library size and rate of partial
mutagenesis. Comparing the CSM shown for N = 100,000 and r = 0.10, which is a replicate of the CSM shown in Fig. 2a
generated with a different random mutagenesis seed, shows that SEAM outputs are also robust to random sequence generation.
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Supplementary Figure 7. Impact of attribution method on SEAM mechanistic insights. a, Comparison of wild-type
attribution maps for the DeepSTARR locus shown in Fig. 2a, generated using in silico mutagenesis (ISM), Saliency Maps,
SmoothGrad, Integrated Gradients (IntGrad), and DeepSHAP. Gray bars running vertically across the attribution maps align
with entropy-biased regions in the corresponding CSMs, below. b, Entropy-based CSMs generated by SEAM using different
attribution methods for the same locus. Features in the CSM are consistent across attribution methods, and identify locations of
important motifs. c,d, Attribution maps and corresponding SEAM entropy-based CSMs for another locus obtained from the
DeepSTARR test set (index 22612) using the developmental head, with similar trends observed. Cl., cluster.
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Supplementary Figure 8. SEAM disentangles mechanistic heterogeneity at the ChromBPNet PPIF promoter. a,
Attribution map for the wild-type (WT) PPIF promoter. b, Cluster Summary Matrix (CSM) showing the percent mismatch at
each position across sequences within a cluster, highlighting sites where mutations drive distinct mechanisms. ¢, Representative
background-separated, cluster-averaged attribution maps from SEAM, each corresponding to a distinct mechanism governed by
the encircled position in the CSM above (magenta). d, Overlay of all 100 background-separated, cluster-averaged attribution
maps reveals the full landscape of mechanistic diversity across the local library.
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Supplementary Figure 9. SEAM-defined background signals reveal compositional and mutational differences between
the PPIF promoter and enhancer. a, Standard deviation of attribution values across all clusters at the PPIF enhancer (10%
mutation rate using the first model fold), illustrating the static background on which TF motifs reside. b, Attribution analysis
of the enhancer at 10% mutation. Top: attribution map for the wild-type cluster (c. WT). Bottom: SEAM-derived average
background (Avg. BG) computed across clusters. Middle: Result of subtracting the average background from the WT cluster.
While AP-1 and NRF2 motifs are ablated in the background and appear only in the WT cluster, residual attribution signals
corresponding to ETS and ZEB1 motifs persist following SEAM’s background separation, indicating partial resistance to 10%
mutational perturbation. ¢, Visualization of the enhancer’s average background attribution map (from b, bottom) displaying
only the most prominent nucleotide at each position (maximum attribution), highlighting its compositionally mixed signal. d,
Comparison of nucleotide attribution patterns between the PPIF promoter (orange) and enhancer (blue). For each position, the
nucleotide with the strongest absolute attribution was identified. Top: Distribution across all positions. Bottom: Restricted to the
top 50% of positions by attribution magnitude. In both cases, promoter attributions are skewed toward C/G, while the enhancer
exhibits balanced nucleotide composition. Pink horizontal lines denote perfectly uniform distribution. e, SEAM-derived
average background attribution maps at the PPIF enhancer under 10% (top) and 40% (bottom) mutation rates. At 40%, all
motif signals are lost, leaving only low-attribution, diffuse background signals.
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Supplementary Figure 10. Background separation at a DeepSTARR enhancer. a, First row: Wild-type (WT) attribution
map from a DeepSTARR enhancer (test set index 4071). A low-affinity DRE TFBS, ATCGAG-with one mutation to the
consensus TFBS, ATCGAT-is positioned near the center, resulting in an overall low Hk expression (-0.49). Seemingly spurious
scores across the attribution map obscure the identification of TF motifs. Second row: Average (avg.) attribution map for the
WT cluster (cl.WT), showing SEAM’s ability to denoise the WT mechanism by averaging over qualitatively similar attribution
maps. Third row: Average of all intra-cluster backgrounds (BG) separated by SEAM, featuring AT-rich attribution signals
across the enhancer. Fourth row: WT cluster after background removal, generated by subtracting the average background
(row 3) from the averaged WT mechanism (row 2). Background separation reveals three previously obscured TF motifs. b,
Standard deviation of attribution values over clusters, highlighting the static nature of the background on which the TF motifs
reside across all clusters. ¢, Examples of background separation on other mechanisms discovered by SEAM at the same locus,
revealing previously obfuscated TF motifs in each cluster. Cluster 14 recovers a higher-affinity DRE/DRE motif compared to
WT that is not necessitated by CREB on the right-hand side. d, Attribution map was generated from the WT sequence after
mutating the central DRE TFBS to match the consensus motif ATCGAT, including optimized flanking nucleotides. Compared
to the WT, these 10 mutations increase Hk expression to 2.01, while substantially altering the attributed background context
across the enhancer (see insets). This example highlights the sensitivity of background signals to coordinated mutations.
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Supplementary Figure 11. SEAM background separation enhances motif clarity across DeepSTARR enhancers.
a, Each panel shows the DeepSHAP attribution map for a reference (Ref) sequence curated from the DeepSTARR test set.
DeepSTARR predictions (y) for each sequence are listed on the right. b, SEAM foreground (FG) attribution map computed for
each reference sequence (see Methods). Background separation was derived using SEAM from a locally mutagenized library
(10% mutation rate, 100k sequences, 30 clusters). Following SEAM-based clustering and background separation, reference
motifs emerge with striking clarity, revealing the underlying regulatory logic that was previously obscured. Dev, developmental
head; Hk, Housekeeping head.
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Supplementary Figure 12. Background separation at the ProCapNet MYC promoter. a, Top: Wild-type (WT)
attribution map with seemingly spurious scores across the promoter, obscuring the identification of TF motifs. Bottom: Average
(avg.) background (BG) across all clusters, as separated by SEAM. b, Examples of four clusters out of 200, each showing
before (top) and after (bottom) background separation on the average attribution maps in the associated cluster. ¢, Examples of
averaged attribution maps from three clusters, showing the persistence of background signals across mechanisms. While the
standard deviation over clusters is relatively large at the positions of mechanism-specific motifs (highlighted in pink rectangles),
the background attribution signals surrounding them show nearly zero standard deviation, emphasizing the static nature of the
background on which the TF motifs reside across all clusters. d, Overlay of the average attribution maps in all 200 clusters
before (top) and after (bottom) background separation. CL./C., cluster.
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Supplementary Figure 13. Impact of ChromBPNet model fold and mutation rate on SEAM background separation.
a, Examples of attribution maps for intra-cluster background (BG, top) and foreground (FG, bottom) for clusters 16 and 23. FG
is defined by subtracting the average of all intra-cluster BGs from the average of attribution maps in a given cluster. Intra-cluster
background is informed by the positional Shannon entropy over sequences in each cluster (middle). SEAM uses the thresholded
positional Shannon entropy to mask out TF-dependent attributions in each map. The foreground attribution map is derived by
subtracting the average (avg.) attribution map of a given cluster from the average of all intra-cluster BG maps over all clusters.
As in Fig. 3, SEAM was run using the average of attribution maps over all folds, with sequences sampled using a 10% mutation
rate. b, Results of running SEAM background separation independently on each of the first five ChromBPNet folds (10%
mutation rate). ¢, Results of independently running SEAM background separation on the first fold using datasets generated
with different mutation rates.
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Supplementary Figure 14. SEAM reveals consistent background signals across attribution methods despite divergent
foreground quality. a, Standard deviation of cluster-averaged attribution maps at the ChromBPNet PPIF promoter for Saliency
Maps (Saliency), Integrated Gradients (IntGrad), and DeepSHAP (DSHAP). For each attribution method, SEAM was run
independently on the same library of 100,000 sequences generated with a 10% mutation rate, using the first model fold, and
clustered using hierarchical clustering into 200 clusters. Saliency exhibits the highest overall variation across positions, followed
by IntGrad and then DeepSHAP. Standard deviation profiles are broadly consistent across methods, with shared regions of
near-zero variability (e.g., blue box) suggesting convergence on background-dominated signals. However, a motif-length
region shows a notable discrepancy (red box), where Saliency displays minimal variability while IntGrad and DeepSHAP
detect a poised motif. b, Attribution maps for the WT PPIF promoter computed using Saliency, IntGrad, DeepSHAP, and
SQUID. SQUID was trained on the same local neighborhood as SEAM and achieved an additive model fit of R> = 0.54. A
key motif absent in Saliency but recovered by other methods is highlighted (red box). Relative to IntGrad and DeepSHAP,
Saliency lacks a clearly defined GC-rich background, suggesting reduced sensitivity to local regulatory context. ¢, Average
background maps separated by SEAM for Saliency, IntGrad, and DeepSHAP. Despite differences in foreground quality, SEAM
isolates highly similar background signals across methods, consistent in both spatial pattern and attribution magnitude. d, Left:
Pairwise scatter plots comparing WT attribution maps across methods (Saliency vs IntGrad, Saliency vs DeepSHAP, IntGrad vs
DeepSHAP), with Spearman correlation coefficients shown. Right: Corresponding scatter plots comparing SEAM-separated
average background maps across methods. Correlation values increased by 0.26, 0.30, and 0.18, respectively (from 0.48, 0.32,
and 0.61 to 0.74, 0.62, and 0.79), indicating that background signals are substantially more consistent across attribution methods
than the raw attribution maps themselves.
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Supplementary Figure 15. Attribution analysis at the CLIPNET PIK3R3 promoter. a, CAAT box TF motif analysis
using attribution maps generated from sequences with none, one, or both of the SEAM-discovered pairwise mutations (cl.
G in Fig. 4). In the last row, both mutations are applied to the WT sequence, revealing a CAAT box binding motif along
with upstream and downstream mechanistic changes. b, CLIPNET predicted profile for the four sequences in the CAAT box
analysis, showing that SEAM-discovered mutations change transcription direction at the promoter. As a general note on the
computational challenge of capturing pairwise effects, the number of double nucleotide variants (k = 2) at the CLIPNET
promoter (length L = 500, A = 10 alleles) is (é) (A— l)k, requiring assessment of 10,112,251 attribution maps. RPM, reads
per million. ¢, Mechanism-decomposed attribution maps previously discovered at the CLIPNET PIK3R3 promoter (in Fig. 4)
can be further decomposed to separate background from TF-dependent motifs. First row: The average (avg.) attribution map for
cluster 19 (cl.19). Second row: The intra-cluster average background for cluster 19, with masking informed by the positional
Shannon entropy over sequences in the cluster. Third row: The average of all intra-cluster backgrounds (BG) from each cluster.
Fourth row: Subtracting the third row from the first row produces a noise-reduced, background-separated representation of the
mechanism in cluster 19. d, Additional examples of SEAM noise-reduced background separation for clusters 14 and 15.
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Supplementary Figure 16. SEAM analysis of mechanistic variation at CLIPNET promoters. Wild-type (WT) attribution
map generated by CLIPNET (top) and the overlay of all average attribution maps for the 200 clusters (bottom), generated by
SEAM, for each of sixteen promoters. Non-oncogene and oncogene promoters are denoted with black and red text, respectively.
A subset of the curated promoters are highly polymorphic, which includes the oncopromoters and HLA family (right).! In
non-oncogene promoters, mechanistic variation is typically constrained to tuning the amplitude of constitutively active motifs
already present in the WT attribution map. In these cases, the mechanistic variation discovered by SEAM is highly conserved.
In contrast, oncogene promoters show substantially more mechanistic variation compared to their WT attribution map, with
many poised regulatory motifs spanning the promoter sequence. SEAM also identifies conservation of mechanistic variation
across related loci, such as HLA-B and HLA-C, which have a 89.2% sequence similarity as calculated by EMBOSS.? Beyond
sequence similarity, SEAM is able to consider the similarity between mechanistic aspects of promoter regulation.
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Supplementary Figure 17. SEAM analysis of mechanistic variation at ProCapNet MYC promoter. a, Predicted
profile and attribution map for the wild-type sequence (WT Seq), demonstrating the TF motifs and profile peaks present,
which are used for biased ablation experiments. b, Five (cl. A-E) of the 200 clusters generated using SEAM. For each panel,
the predicted profiles (prof.) associated with the attribution maps in the given cluster are overlaid on top, with the average
(avg.) of all attribution maps in the cluster displayed on the bottom. In cluster A, SEAM finds a stronger version of the
previously-documented weak antisense initiator. In clusters B-D, SEAM finds previously-undiscovered weak antisense (cl. B)
and sense (cl. C, D) initiators. In cluster E, SEAM discovers an alternative TATA and BRE/SP TFBS that substantially alters
upstream and downstream attribution values, while reversing the direction of transcription (pink rectangles). ¢, Overlay of
all predicted profiles for all clusters (top) and overlay of all average attribution maps per cluster (bottom). In this view, the
appearance of smeared motifs represent overlapping mechanisms that can be finely tuned over a broad range based on sequence
context.
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Supplementary Figure 18. SEAM identifies alternative binding preferences of Hnf4a. a, Schematic for applying the
SEAM framework to combinatorially complete libraries. For every sequence in the experimentally obtained Protein Binding
Microarray (PBM) library, SEAM generates an empirical mutagenesis map using the log2 fold change between the E scores of
the reference sequence and a single nucleotide variant. All other steps in the SEAM framework remain unchanged. b, Left:
Box plots showing E scores for each of the 200 clusters produced by SEAM, using hierarchical clustering, ranked in ascending
order by each cluster’s median E score. Lines represent the upper and lower quartiles; the average IQR across clusters is
0.10. Letters A-F label example clusters. Right: Number of empirical mutagenesis maps (occupancy) in each cluster. ¢, Top
inset: Information content sequence logos for the two alternative binding modes captured in the original PBM study of Hnf4a
using the Seed-and-Wobble algorithm. Bottom: Sequence logos of averaged empirical mutagenesis maps corresponding to
the example SEAM clusters labeled in the previous panel. d, UMAP embedding of the 100,000 attribution maps, as used in
previous panels, where each attribution map is represented as a point colored by the E score of its corresponding sequence.
Numbers 1-9 label example clusters. e, Sequence logos for empirical mutagenesis maps averaged within each encircled regions
in the previous panel.
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Supplementary Figure 19. SEAM mechanistically fine-tunes pre-optimized sequences. a, Schematic of the REVO
protocol for designing mechanistically diverse sequences optimized for a given objective (see Methods). b, First row: Attribution
map for the EFS-6 starting sequence, obtained via the Evolved from Scratch algorithm. Second row: Attribution map for the
final sequence in the EFS-6 trajectory. Third row: Attribution map for the highest-scoring REVO sequence initialized from
EFS-6, which is qualitatively distinct from the second row. Fourth row: Overlay of average maps from each of the 200 clusters
generated by SEAM, applied to the REVO library initialized from EFS-6. ¢, UMAP embedding of attribution maps, where
each attribution map is represented as a point colored by DNN prediction. Attribution maps were generated from a local library
(100,000 sequences using a 10% mutation rate) using the final sequence from the EFS-4 pathway. The resulting mechanism
space uncovers a continuum of attribution maps organized by DNN prediction. After clustering these maps into 200 groups
using K-means, we identified distinct trajectories across contiguous clusters that fine-tuned the contributions of individual
motifs in relation to their roles in the initially optimized mechanism. An example trajectory formed from nine clusters is shown
in the inset. d, Top: Averaged attribution maps of the clusters shown in the previous inset. Following the trajectory across
clusters fine-tunes the final EFS-4 mechanism. Bottom: Subset of the CSM based on positional Shannon entropy, highlighting
the unique sequence determinants driving mechanistic variation in mechanism space. Analysis of the CSM reveals sequence
dependencies responsible for fine-tuning these motifs are idiosyncratic and unpredictable from sequence alone.
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Supplementary Figure 20. Schematic of the terraced labyrinth fitness function. Schematic of Crutchfield and
Nimwegen’s terraced labyrinth fitness function?, illustrating mutational trajectories constrained within mechanisms (subbasins)
and rare portal mutations that drive shifts between them. This subbasin—portal architecture captures epochal evolution, with
long periods of stasis punctuated by sudden innovations.
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Supplementary Figure 21. SEAM Graphic User Interface (GUI). Example usage of the SEAM Interactive Interpretability
Tool, a GUI allowing users to explore SEAM outputs, such as defining clusters with customized boundaries in the embedded
space (shown) and analyzing associated sequence statistics. In the embedded space, each point is an attribution map from a
local library, colored by its predicted activity. Attribution maps and related statistics in user-drawn clusters are averaged and
displayed in a variety of formats. Data in schematic generated using DeepSTARR: test set index 13748; developmental head.
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Supplementary Note 1: Relation of SEAM to other methods

SEAM was developed to characterize the diversity of regulatory mechanisms accessible through local mutational variation and
separate foreground from background regulatory signals. While related in spirit to several interpretability approaches, SEAM
differs in scope and strategy. Below, we highlight conceptual distinctions from prior work.

Motif discovery frameworks

— TF-MoDISco” clusters high-attribution segments from large-scale genomic data to extract recurring sequence motifs. These
motif-level summaries are effective for cataloging learned features but are not designed to resolve multiple mechanistic
programs at a single locus. SEAM instead focuses on local neighborhoods of sequence space, constructing mutagenized
libraries aligned to a reference and clustering full-length attribution maps. This enables the discovery of distinct regulatory
mechanisms, the specific mutations that induce them, and the separation of foreground from background regulatory
signals—capabilities not addressed by motif discovery tools.

Attribution smoothing approaches

— SmoothGrad® improves attribution interpretability by averaging maps across inputs perturbed with Gaussian noise. While
effective in vision models, this strategy moves genomic sequences off the discrete DNA alphabet, undermining biological
validity. SEAM generalizes this denoising strategy using biologically meaningful perturbations—point mutations—
and ensures averaging occurs only among sequences that share a consistent mechanistic program. As such, SEAM
simultaneously reduces mechanism-specific attribution noise while revealing the distinct mechanisms poised near a given
sequence.

Model-guided perturbation methods

— Counterfactual motif ablation experiments focus narrowly on mutating putative motifs and recalculating attribution
maps to assess changes in regulatory mechanisms.® While useful for validating the importance of known features, these
approaches overlook the contribution of nucleotides outside of easily visualized motif patterns or regions with elevated
signal in predicted profile tracks. As a result, they provide a limited and potentially biased view of mechanistic diversity,
missing context-dependent or distributed regulatory features. In contrast, SEAM samples a broader, unbiased mutational
neighborhood, enabling the discovery of unexpected, noncanonical, or context-specific mechanisms.

— In silico optimization approaches formulate the problem of regulatory design as an objective-driven search through
sequence space. For example, Ledidi performs gradient-based optimization to design discrete edits that induce a desired
change in model output.” While well-suited for engineering specific functional outcomes, such methods assume a fixed
design objective and do not explore alternative regulatory architectures. SEAM differs in scope: when using local libraries,
it provides an unbiased, non—goal-directed view of mutational space; when applied to optimization libraries (e.g., REVO),
SEAM clusters the resulting sequences to expose mechanistic heterogeneity within a defined region of sequence space,
revealing distinct regulatory strategies that satisfy the same functional objective.

Limitations of interpreting attribution scores as regulatory mechanisms

— In Silico Mutagenesis (ISM) quantifies the effects of individual mutations by computing prediction differences.> However,
high-amplitude ISM scores may reflect mutational sensitivity without indicating how the mutation rewires regulatory logic.
Moreover, mechanistic interpretation requires manual inspection and targeted mutation, introducing bias toward large-effect
variants while missing subtle mechanism-altering changes masked by background signal (e.g., Fig. 1c).

— Complete and linear attribution methods such as Integrated Gradients’ and DeepSHAP'? distribute importance across
input features under completeness constraints. Recent theoretical work has shown that these attribution methods and others
relying on linearity and completeness constraints can assign zero attribution to positions that nonetheless impact model

. . 1 l
predictions.

SEAM avoids these limitations by offering an unbiased, data-driven framework for discovering mutationally induced shifts
in regulatory mechanism without relying on prior assumptions about which positions or variants to test. Because attribution
methods operate on a fixed input, they are inherently limited to interpreting individual sequences—failing to capture combina-
torial effects of mutations or the broader structure of mechanistic variation across sequence space. By analyzing a localized
mutational neighborhood and clustering full-length attribution maps, SEAM resolves distinct mechanisms, identifies their
sequence determinants, and reveals how regulatory logic can be reprogrammed through mutation.
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Supplementary Note 2: Global sequence libraries

Mechanisms encoded by diverse sequences are often difficult to compare directly, as their regulatory logic may be organized
around distinct motifs or contextual features. Global libraries provide one way to address this challenge by anchoring sequences
to a fixed pattern (or set of patterns) embedded in randomized sequence contexts, analogous to sufficiency experiments used to
test motifs and their syntax.'> This design establishes a common reference point, allowing SEAM to cluster mechanistic variation
around the chosen pattern(s) and to systematically examine how their function depends on sequence context (Supplementary
Fig. 22a).

We applied SEAM to global libraries containing CREB/ATF binding sites (TNNTGAAAT, with variable positions at N)
using DeepSTARR.'? This analysis revealed a range of mechanistic trajectories associated with changes both within the TFBS
core and in surrounding nucleotides (Fig. 22e). In a separate analysis, SEAM uncovered program-specific patterns of motif
utilization when the same global library was analyzed in the context of attribution maps representing either developmental
or housekeeping regulatory programs. In several cases, sequence elements were subtly repurposed to adapt to different
regulatory logic—for example, a DRE motif characteristic of housekeeping programs was reinterpreted as a GATA motif in the
developmental context (Fig. 22f). We also extended this approach to cropped genomic sequences aligned on AP-1 instances,
enabling direct comparison between synthetic global libraries and natural genomic contexts (Supplementary Fig. 22b). While
the detailed patterns differed, SEAM identified comparable mechanistic spectra in both settings, suggesting that global libraries
can serve as a scaffold for mapping genomic instances in attribution space (Supplementary Fig. 22c,d).

Overall, these exploratory analyses indicate that SEAM can be extended to global library designs, where anchoring to
fixed sequence patterns provides a common basis for comparing context-dependent mechanisms. While the present results are
illustrative, they highlight the potential of global libraries to complement local mutagenesis and design-derived approaches by
offering a systematic framework to study how motif identity and surrounding context jointly shape cis-regulatory mechanisms.
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Supplementary Figure 22. SEAM enables global analysis of motif-centric mechanisms across diverse sequence
contexts a, Schematic for applying the SEAM framework using global libraries to explore mechanistic variation of the AP-1
binding motif, using the fixed sequence TGANTCA. For every sequence in the global library, SEAM generates an attribution
map that can be cropped to modulate the resolution of features obtained in the subsequent embedding. Attribution maps
are then embedded to observe their spatial relationships. The maps within each encircled region in mechanism space are
averaged to reveal noise-reduced attribution maps. b, Schematic for selecting all genomic instances of the AP-1 TFBS from
the DeepSTARR test set. Genomic-based attribution maps for all 3,508 genomic instances were generated and cropped with
10 flanking nucleotides on each side of the AP-1 site, matching the length used in the global library. ¢, Left: Histogram
of the UMAP embedding of the genomic-based attribution maps. Right: Histogram of UMAP embedding of global-based
attribution maps, showing a substantially higher resolution of spatial features. d, UMAP embedding of both the genomic- and
global-based attribution maps. e, Global analysis of CREB/ATF binding mechanisms using the sequence TNNTGAAAT (based
on DeepSTARR’s developmental head). Top left: UMAP embedding of cropped attribution maps. Bottom left: Sequence logo
for previously published contribution weight matrices (CWM) derived by TF-MoDISco,* highlighting two distinct CREB/ATF
motifs with 255 and 199 supporting seqlets, respectively. Right: Sequence logos for SEAM-derived averaged attribution
maps for various clusters and associated sequence logo for the sequences within the cluster defined by the encircled regions
in the UMAP embedding. f, UMAP embedding comparing attribution maps from the DRE global library (fixed sequence
TATCGATA) generated using the DeepSTARR developmental (Dev) and housekeeping (Hk) heads.
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