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ABSTRACT

Deep neural networks (DNNs) have greatly advanced the ability to predict genome function from sequence. Interpreting
genomic DNNs in terms of biological mechanisms, however, remains difficult. Here we introduce SQUID, a genomic DNN
interpretability framework based on surrogate modeling. SQUID approximates genomic DNNs in user-specified regions of
sequence space using surrogate models, i.e., simpler models that are mechanistically interpretable. Importantly, SQUID
removes the confounding effects that nonlinearities and heteroscedastic noise in functional genomics data can have on
model interpretation. Benchmarking analysis on multiple genomic DNNs shows that SQUID, when compared to established
interpretability methods, identifies motifs that are more consistent across genomic loci and yields improved single-nucleotide
variant-effect predictions. SQUID also supports surrogate models that quantify epistatic interactions within and between
cis-regulatory elements. SQUID thus advances the ability to mechanistically interpret genomic DNNs.

Deep neural networks (DNNs) are increasingly being used to analyze and biologically interpret functional genomics
data. DNNs have demonstrated remarkable success at predicting diverse genomic activities from primary genome sequences,
including mRNA expression levels,1 transcription start site activity,2, 3 mRNA splicing patterns,4 protein-DNA binding,5

chromatin accessibility,6 and chromatin conformation.7 It is widely believed that the success of genomic DNNs reflects their
ability to accurately model complex biological mechanisms. However, interpreting genomic DNNs in terms of biological
mechanisms remains difficult.

A variety of post hoc attribution methods have been developed for aiding the interpretation of genomic DNNs.8, 9 The
most commonly used attribution methods produce attribution maps, which quantify the position-specific effects that variant
nucleotides in a sequence of interest have on DNN predictions. Attribution maps are often mechanistically interpreted by
identifying motifs, i.e. recurrent sequence patterns characteristic of specific biological mechanisms, present within these maps.
To provide consistent biological explanations for sequence activity, attribution methods must produce consistent motifs across
input sequences that function through shared biological mechanisms.

Established attribution methods for genomic DNNs have major limitations. Different attribution methods use different
strategies to quantify position-specific nucleotide effects, and can therefore yield different mechanistic explanations.10–12 For
example, Saliency Maps13 quantify nucleotide effects using the gradient of DNN predictions at the sequence of interest, whereas
DeepLIFT14 propagates activation differences between the sequence of interest and a reference sequence. Moreover, the
most widely-used attribution methods in genomics – including Saliency Maps,13 DeepLIFT,14 in silico mutagenesis (ISM),15

SmoothGrad,16 Integrated Gradients,17 and DeepSHAP18 – assume that nucleotide effects on DNN predictions are locally
additive. As a result, these attribution methods do not account for the genetic interactions (i.e., specific epistasis19–22), global
nonlinearities (i.e., global epistasis23–27), and heteroscedastic noise26 that are often present in functional genomics data.

Here we introduce SQUID (Surrogate Quantitative Interpretability for Deepnets), an interpretability framework for genomic
DNNs that overcomes these limitations. SQUID uses surrogate models—simple models with interpretable parameters—to
approximate the DNN function within localized regions of sequence space. SQUID applies MAVE-NN,26 a quantitative
modeling framework developed for analyzing multiplex assays of variant effects (MAVEs), to in silico MAVE datasets generated
using the DNN as an oracle. In this way, SQUID models DNN predictions in a user-specified region of sequence space,
accounts for the nonlinearities and heteroscedastic noise present in DNN predictions, and (optionally) quantifies specific
epistatic interactions. Benchmarking SQUID against existing attribution methods, we find that SQUID more consistently
quantifies the binding motifs of transcription factors (TFs), reduces noise in attribution maps, and improves variant-effect
predictions. We also find that the domain-specific surrogate models used by SQUID are critical for this improved performance.
Finally, we show how SQUID can provide insights into epistatic interactions in cis-regulatory elements, and can be used to
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study such interactions both locally and globally in sequence space. SQUID thus provides a new and useful way to interpret
genomic DNNs.

Results

SQUID: An interpretable surrogate modeling framework for genomic DNNs
SQUID approximates DNNs in user-specified regions of sequence space using surrogate models that have mechanistically
interpretable parameters. The SQUID framework comprises three steps (Fig. 1a): (1) generate an in silico MAVE dataset
comprised of variant sequences and the corresponding DNN predictions; (2) fit a surrogate model to these in silico data using
MAVE-NN26; and (3) visualize and interpret the surrogate model’s parameters. This workflow requires the specification of two
key analysis parameters: the region of sequence space over which the DNN is to be approximated, and the mathematical form
of the surrogate model. By choosing different values for these analysis parameters, users are able to test different mechanistic
hypotheses. SQUID assists users by facilitating the use of analysis parameters that have been found in practice to work well in
the design and analysis of MAVE experiments.

First, SQUID generates an in silico MAVE dataset. This is done by generating a library of variant sequences, then using the
DNN to assign a functional score to each sequence in the library. In this paper we consider two types of libraries: local and
global. A local library is generated by partially mutagenizing a specific sequence of interest (e.g., a genomic cis-regulatory
sequence). A global library is generated by inserting partially-mutagenized versions of a genetic element of interest into random
sequences. In what follows, we use a partial mutagenesis rate of 10% per nucleotide (which is common in MAVE experiments,
e.g. ref.28) and libraries comprising 100,000 variant sequences (unless otherwise noted).

Next, SQUID fits a surrogate model to the in silico MAVE dataset. SQUID uses nonlinear surrogate models developed
specifically for modeling MAVE data.26 These models, called latent phenotype models, have three components (Fig. 1b):

Figure 1. Overview of SQUID. a, Schematic of the SQUID modeling framework. Analysis using SQUID comprises three
main steps: (1) generate an in silico MAVE dataset; (2) train a surrogate model on the MAVE dataset; and (3) visualize
parameters of the surrogate model to uncover biological mechanisms. b, Structure of the latent phenotype surrogate models
supported by SQUID. G-P, genotype-phenotype; GE, global epistasis; PI, prediction interval. c, Schematic diagram of a DNN
function on a 2-dimensional projection of sequence space. Each point in the plane corresponds to a unique sequence, and
elevations represent DNN predictions. Green region schematizes the ability of surrogate models to approximate the DNN
function over an extended region of sequence space. Insets show an example DNN function (in 1D profile; black line) centered
about a sequence of interest with the ground-truth function (dashed line) overlaid. Left inset illustrates the sensitivity of
Saliency Maps to non-smooth local function properties. Right inset illustrates the ability of surrogate models to better
approximate ground truth. ISM, in silico mutagenesis; IntGrad, Integrated Gradients.
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a genotype-phenotype (G-P) map, a global epistasis (GE) nonlinearity, and a noise model. The G-P map projects the input
sequence down to a one-dimensional latent phenotype. SQUID, via MAVE-NN, supports the use of additive G-P maps,
pairwise-interaction G-P maps, and user-defined G-P maps. The GE nonlinearity, which is modeled using a linear combination
of sigmoids, maps the latent phenotype to a most-probable DNN prediction. The noise model then describes how actual DNN
predictions are expected to scatter around the predicted most-probable value. SQUID supports a variety of noise models,
including heteroscedastic noise models based on the skewed-t distribution of Jones and Faddy29 (which we use in this paper).
Surrogate model parameters are inferred from in silico MAVE data by maximizing variational information26 (or equivalently,
log likelihood) using standard stochastic gradient optimization.

The parameters of the G-P map are of primary interest for downstream mechanistic interpretations. The parameters of
additive G-P maps quantify single-nucleotide effects, and are readily visualized using the same methods (sequence logos30 and
heatmaps) normally used for standard attribution maps. The parameters of pairwise-interaction G-P maps quantify epistatic
genetic interactions as well as single-nucleotide effects, and can be visualized using block-triangular heat maps (as in ref.26).

SQUID improves the quantification of transcription factor binding motifs
A common goal when interpreting attribution maps for a DNA sequence of interest is to identify functional binding sites for TFs.
However, the TF binding motifs observed in attribution maps often vary substantially from sequence to sequence. This variation
results in part from the underlying biology, but it can be exacerbated by the specific ways in which attribution methods quantify
the behavior of the DNN function in localized regions of sequence space (Fig. 1c). The consistency of binding motifs observed
in attribution maps across different genomic sequences therefore provides a way to quantify and compare the performance of
different attribution methods.

To benchmark the consistency of binding motifs identified by different attribution methods, we identified sequences in
the human genome that contain putative TF binding sites. Specifically, for each TF, we identified genomic instances of the
consensus TF binding site sequence. We then aligned these genomic sequences about their putative binding sites and computed,
for each genomic sequence, an attribution map that spans the core putative binding site as well as a specified amount of flanking
DNA on either side. Finally, we calculated the Euclidean distance between the vector of attribution scores for individual
sequences and the mean vector of attribution scores. We refer to this distance as the “attribution error” (Fig. 2a; see Methods
for details).

We first applied this benchmarking pipeline to the human TF AP-1 using ResidualBind-32,31 a genomic DNN that predicts
chromatin accessibility in human cell lines. We compared SQUID to two commonly used attribution methods that had
previously been used in ref.31 to analyze ResidualBind-32: in silico mutagenesis (ISM) and Saliency Maps. We found that,
across different genomic sequences that contain the consensus AP-1 binding site TGAGTCA, SQUID recovers AP-1 binding
motifs that have markedly-lower attribution errors than the binding motifs recovered by ISM or Saliency Maps (Fig. 2b,
left). This result is supported by the examination of attribution maps of individual sequences (Fig. 2b, right). Compared to
the attribution maps provided by other methods, the attribution maps provided by SQUID exhibit core regions with greater
similarity to the ensemble-averaged motif, and flanking regions with reduced (likely non-biological) scores. This finding was
robust to the choice of SQUID analysis parameters (Supplementary Fig. 1). We conclude that SQUID quantifies the AP-1
binding motif from ResidualBind-32 more consistently than does ISM or Saliency Maps.

We next investigated whether the surrogate models for AP-1 identified by SQUID benefited from incorporating a GE
nonlinearity. Plotting the effects that mutations in a representative genomic sequence have on DNN predictions, we found that
virtually all combinations of 2 or more mutations to the core 7-nt AP-1 site reduced DNN predictions to near-background
levels (Fig. 2c). Moreover, the GE nonlinearity learned by SQUID as part of the surrogate model accurately recapitulated
this saturation effect. By contrast, surrogate modeling using ridge regression (which is implemented in SQUID as a baseline
method and does not incorporate a GE nonlinearity or heteroscedastic noise model; see Methods for details) failed to capture
this saturation effect (Figs. 2d and 2e). This finding demonstrates that surrogate modeling of genomic DNNs can benefit from
using our domain-specific surrogate models, as opposed to the linear surrogate models that are standard in other fields (e.g.,
computer vision32).

We then expanded our analysis to other TFs and to other genomic DNNs (DeepSTARR33 and BPNet5; see Supplementary
Table 1). In each benchmark analysis, we compared SQUID to the attribution methods (ISM, Saliency Maps, DeepLIFT, or
DeepSHAP) used in the original study describing the DNN being modeled. We found that the attribution maps provided by
SQUID consistently yielded binding motifs with markedly-lower attribution error than the binding motifs provided by the other
attribution methods (Fig. 3a). These results were robust to the amount of flanking DNA used when computing attribution
errors (Fig. 3b). We also found that strong GE nonlinearities were pervasive in the surrogate models inferred by SQUID for the
genomic sequences tested (Supplementary Fig. 2). These results suggest that SQUID, quite generally, quantifies TF binding
motifs more consistently than do competing attribution methods. These findings also suggest that modeling GE nonlinearities
and heteroscedastic noise is important for the accurate surrogate modeling of genomic DNNs.
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Figure 2. Benchmark analysis of attribution methods. a, Our benchmark analysis pipeline consisted of 3 steps: (1)
genomic sequences that contained consensus binding sites for a TF of interest were identified; (2) an attribution map spanning
the core identified site and 100 nt of flanking sequence on each side was computed for each identified sequence; and (3) a
corresponding attribution error was computed (see Methods for details). b, Attribution maps and attribution errors for 7-nt
consensus AP-1 binding sites (core sequence TGAGTGA; flank size 15 nt), computed using ResidualBind-32 as the DNN. Left,
Box plots show attribution errors for 50 genomic sequences. Triangles represent means; lines represent median, upper quartile,
and lower quartile; whiskers represent 1.5x the inter-quartile range. Right, Binding motifs observed for two example genomic
sequences, together with the ensemble-averaged binding motif. c, Mutational effects predicted by the DNN versus additive
effects predicted by SQUID. Dots represent effects of different sets of mutations to a representative genomic sequence. The GE
nonlinearity and 95% PI inferred by SQUID are shown for comparison. d, DNN predictions versus the predictions of two
surrogate models inferred by SQUID for a representative genomic sequence. One surrogate model (GE, right) has a GE
nonlinearity, the other (Ridge, left) does not. Dots represent test sequences from the in silico MAVE dataset. Diagonal lines
represent equality between DNN and surrogate model predictions. WT, wild-type sequence; R2, squared Pearson correlation
coefficient. e, R2 values computed as in panel d for 50 different sequences of interest. p-values in panels b and e were
computed using a one-sided Mann-Whitney U test; ***, p < 0.001. TF, transcription factor; DNN, deep neural network; GE,
global epistasis; PI, prediction interval; ISM, in silico mutagenesis.

The ability of SQUID to better quantify TF binding motifs is exemplified in Figure 3c. Shown are attribution maps for
the mouse TF Nanog, computed using BPNet, a consensus binding site of AGCCATCAA, and 50 nt of flanking DNA. When
attribution maps are averaged across genomic loci, ISM, DeepLIFT, and SQUID all produce attribution maps that reveal both
the Nanog binding motif and a more subtle preference for periodically-spaced AT-rich sequences in the flanking DNA (which
likely reflects the interaction of nucleosomes with the DNA double helix). However, the attribution maps for specific genomic
sequences often exhibit many other noticeable features. Some of these features may be functional in principle, but many appear
to be spurious and likely reflect non-biological noise in the attribution map. The attribution map provided by SQUID appears to
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Figure 3. Benchmark analysis across TFs, DNNs, and flank sizes. a, Attribution error analysis for various TFs and
genomic DNNs. Results are visualized as in Figure 2b. Each test used 50 sequences from either the human genome (for
ResidualBind-32), the mouse genome (for BPNet), or the fly genome (for DeepSTARR), together with consensus TF binding
site listed in Supplementary Table 1, and flanked by 50 nt of DNA. b, Mean attribution scores computed as in panel a, but using
variable lengths of flanking DNA. The boxes above each plot indicate the largest (i.e., least significant) p-value, computed as in
Figure 2b. n.s., p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, p < 0.001. Dashed line, flank size used in panel a. c,
Binding motifs computed for Nanog via attribution analysis of BPNet. Left, Attribution maps averaged across 50 mouse loci
containing (and centered on) the consensus Nanog binding site AGCCATCAA. Right, Attribution map observed for a single such
locus. Gray bars indicate 10.5 nt periodicity on either side of the consensus Nanog binding site. TF, transcription factor. DNN,
deep neural network. ISM, in silico mutagenesis. GE, global epistasis.

exhibit less noise in the sequences that directly flank core motifs than the attribution maps given by ISM or DeepLIFT. Similar
observations hold in analyses of other TFs (Supplementary Figure 3). These findings raise the possibility that the increased
consistency of binding motifs identified by SQUID is due, at least in part, to the reduction of non-biological noise in attribution
maps.

SQUID reduces noise in attribution maps
Non-biological noise in attribution maps can arise from the inherent roughness in the DNN function, a phenomenon that is often
associated with benign overfitting.34, 35 Benign overfitting is of particular concern for Saliency Maps, since it can adversely
affect the accuracy of DNN gradients.36–38 Benign overfitting is similarly expected to impact other attribution methods, since
these methods essentially quantify how small changes in sequence space affect DNN predictions.10, 37 We reasoned that,
because SQUID integrates information over an extended region of sequence space, the attribution maps provided by SQUID
might be less noisy than the maps provided by other attribution methods.

We therefore asked whether SQUID can reduce the attribution map noise caused by benign overfitting. To answer this
question, we trained a DNN to classify ChIP-seq peaks for the human TF GABPA (see Methods) and saved DNN parameters
both before benign overfitting (i.e., using early stopping) and after benign overfitting (Fig. 4a). Benign overfitting is apparent
from the plateau in validation-set performance that occurs when near-perfect classification performance is achieved on the
training set.39 We then selected 100 random sequences from the test set, and for each sequence and each of four attribution
methods (SQUID, DeepSHAP, SmoothGrad, and Saliency Maps), quantified the differences between the attribution maps
obtained using the pre-overfitting DNN parameters versus the post-overfitting DNN parameters. Figure 4b shows that SQUID
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Figure 4. Attribution method performance during benign overfitting. a, DNN performance as a function of training
epoch. DNN was a 3-layer convolutional neural network trained to classify 200-nt ChIP-seq peaks for the human TF GABPA.
Tests used DNN parameters from epoch 11 (pre-overfitting) and epoch 211 (post-overfitting). AUROC, area under the
reciever-operator characteristic curve. b, Differences between attribution maps for the DNN with pre-overfitting parameters
versus post-overfitting parameters, as quantified by the Euclidean distance between attribution map vectors. Results are shown
for 100 genomic sequences in the ChIP-seq peak test set. Data is visualized and statistical tests were performed as in Figure 2b.
c, Attribution maps obtained for a representative test sequence using pre-overfitting and post-overfitting DNN parameters.
DNN, deep neural network; TF, transcription factor; GE, global epistasis.

provided attribution maps that changed substantially less over the course of benign overfitting. Figure 4c illustrates this behavior
for a representative sequence. These results support the hypothesis that the attribution maps provided by SQUID are more
robust to the adverse effects of benign overfitting than are other attribution methods. These results also suggest that SQUID,
more generally, yields attribution maps that have lower noise than maps computed by other attribution methods.

SQUID better identifies putative weak TF binding sites.

Weak TF binding sites play critical roles in eukaryotic gene regulation.40–42 Functional signals from weak binding sites,
however, can be difficult to distinguish from noise in attribution maps. Having shown that SQUID reduces noise in attribution
maps relative to other attribution methods, we hypothesized that SQUID would also better identify weak yet functional TF
binding sites. To test this hypothesis, we quantified how well attribution maps generated for putative weak TF binding sites
matched the TF binding motifs identified in Figure 3a. For each TF of interest, we randomly selected 150 putative binding sites
in the genome having 0, 1, or 2 mutations relative to the consensus binding site (see Supplementary Table 1). We also recorded
the genomic sequence containing each selected site padded by 50 nt of flanking DNA on either side. We then computed the
score assigned to each selected site using a TF-specific position weight matrix (PWM),43 as in Figure 5a. Different attribution
methods were then used to compute attribution maps for each genomic sequence, after which each sequence was then assigned
an attribution error quantified by the Euclidean distance between the attribution map and the corresponding ensemble-averaged
attribution map from Figure 3a. Figure 5b shows that, as expected, the resulting errors for all attribution methods increased
as PWM score decreased. However, the attribution errors obtained by SQUID were in general consistently lower than the
attribution errors obtained by competing methods. This finding is confirmed by visually examining attribution maps for selected
sites (Supplementary Fig. 4). We conclude that SQUID is better than competing methods at identifying signatures of TF
binding at weak yet functional TF binding sites.
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Figure 5. Benchmark analysis of attribution errors for putative weak TF binding sites. a, Upper, Attribution map for a
representative genomic sequence containing multiple putative weak binding sites for the mouse TF Nanog. Attribution map is
for the BPNet DNN and was computed using ISM. Blue, wild-type nucleotides; gray, non-wild-type nucleotides. Middle, PWM
for Nanog. Lower, PWM scores across the genomic sequence. Only positive PWM scores are shown. b, For each TF and DNN,
plots show attribution errors for 150 putative TF binding sites plotted against putative binding site strength. Bold lines indicate
signals smoothed with a sliding window of 20 nt. Stars indicate p-values computed using the one-sided Mann-Whitney U test:
**, 0.001 ≤ p < 0.01; ***, p < 0.001. PWM scores for each of the 150 putative sites are shown above, along with a logo
representation of the PWM used. Each site is represented by a gray bar shaded according to the number of mutations (0, 1, or 2)
in the core of the putative site.

SQUID improves the zero-shot prediction of single-nucleotide variant effects
A major goal of genomic DNNs and their attribution methods is to predict which genetic variants are pathogenic. Having
observed that SQUID reduces noise in attribution maps, mitigates the adverse effects of benign overfitting, and better identifies
TF binding motifs, we hypothesized that SQUID would provide improved variant effect predictions. To test this hypothesis, we
used SQUID and other attribution methods to predict the effects that single-nucleotide variants (SNVs) have on the activity
of cis-regulatory elements for 15 different disease-associated loci in the human genome, for which the effects of SNVs had
been measured using massively parallel reporter assays (MPRAs).44, 45 In technical terms, this is a zero-shot prediction task,
since none of the methods tested were trained on MPRA data. At each locus, the Pearson correlation coefficient was computed
between the attribution scores and measured SNV effects. We performed this benchmark analysis using three genomic DNNs
previously reported for predicting regions of open chromatin: Enformer,2 Basenji-32,46 and ResidualBind-32.31 We found that
SQUID yielded substantially higher correlations between predicted and measured SNV effects across the 15 assayed loci (Table
1 and Supplementary Fig. 5). The results suggest that attribution maps provided by SQUID are generally able to predict variant
effects better than the attribution maps provided by competing methods. The improved performance of SQUID relative to ISM,
which directly uses DNN predictions to quantify SNV effect sizes, suggests that surrogate modeling may provide a general way
of improving the variant effect predictions of genomic DNNs themselves.

SQUID illuminates epistatic interactions
Understanding the role of epistatic interactions within gene regulatory sequences is a major goal in the study of cis-regulatory
codes. An important advantage of surrogate modeling over other DNN interpretability approaches is that surrogate models
with different mathematical forms can be used to answer different questions about DNN behavior. To test whether SQUID
could be used to study epistatic interactions in cis-regulatory sequences, we implemented a surrogate model that describes all
possible pairwise interactions between nucleotides within a sequence (in addition to the additive contributions from individual
nucleotides). We then used this pairwise-interaction model to quantify the effects of pairs of putative AP-1 binding sites learned
by ResidualBind-32.31 We identified 50 genomic sequences having pairs of putative AP-1 binding sites spaced 4 to 20 nt apart,
used SQUID to infer the parameters of the pairwise-interaction model about each of the 50 sequences, and then averaged the
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DNN Average Pearson correlation Statistical significance

Architecture Task Saliency ISM (Ridge)
SQUID

(GE)
SQUID GE vs. Saliency GE vs. ISM GE vs. Ridge

Enformer DNASE 0.2977 0.4498 0.4486 0.4801 *** ** **

Basenji-32 ATAC-seq 0.2727 0.3575 0.3700 0.4036 *** *** **

ResBind-32 ATAC-seq 0.2846 0.3388 0.3567 0.3912 ** *** *

Table 1. Attribution method performance on a zero-shot variant-effect prediction task. Performance of four attribution
methods, applied to three DNNs, on the CAGI5 variant-effect prediction challenge.44 Numbers indicate the average correlation
observed across the 15 genomic loci assayed by MPRA in ref.44. Bold text indicates the best-performing method for each DNN.
P-values report results from a paired Wilcoxon signed-rank test on the 15 locus-specific correlation values: *, 0.01 ≤ p < 0.05;
**, 0.001 ≤ p < 0.01; ***, p < 0.001. MPRA, massively parallel reporter assay; DNN, deep neural network; ISM, in silico
mutagenesis; GE, global epistasis.

values of the pairwise-interaction parameters corresponding to both inter-site and intra-site interactions across the 50 sequences
(Fig. 6a).

The results are shown in Figures 6b and 6c. We found that pairwise-interaction models consistently performed better on test
data than additive surrogate models inferred in a similar manner, and that both types of models benefited from having a GE
nonlinearity (Fig. 6b). The pairwise-interaction models thus provide more accurate approximations of the DNN, suggesting
that the pairwise-interaction parameters in these models are likely to be meaningful. Examining the resulting context-averaged
pairwise-interaction parameters (Fig. 6c), we observed strong positive intra-site interactions and strong negative inter-site
interactions for critical mutations, i.e., mutations away from the preferred nucleotide at any of the 6 most selective positions
of the AP-1 motif. Intuitively, the positive interactions between a pair of critical mutations within the same AP-1 site arise
because a single critical mutation is sufficient to abrogate AP-1 binding. Thus, a second critical mutation within the same site
has no effect, rather than the additional negative effect that would be predicted by an additive model. By contrast, the negative
inter-site interactions between critical mutations indicate a degree of redundancy between nearby AP-1 binding sites, since
mutations that abrogate both AP-1 sites result in lower activity than is expected from adding the effects of abrogating each
AP-1 site individually.47

While these averages are informative about overall trends, analyses of specific sequences can provide additional insight. In
the analysis above, we observed one sequence that contained 3 putative AP-1 binding sites, with different combinations of these
sites displaying either positive or negative epistatic interactions (Fig. 6d). This example shows that context-specific interactions
can be complex, and that other factors like binding site orientation and spacing may play an important role.48 We note that
including the GE nonlinearity in the pairwise-interaction model was essential for identifying these complex interactions. When
a linear pairwise-interaction model was used, we instead observed positive interactions of similar magnitude between every pair
of sites (Fig. 6e). The reason is that, in the linear pairwise model, the pairwise-interaction parameters are co-opted to describe a
global nonlinearity instead of the nucleotide-specific interactions they are intended to model. Specifically, for this genomic
sequence, the DNN exhibits a rapidly saturating effect of removing AP-1 binding sites on the functional score (Supplementary
Fig. 6), such that disrupting a second binding site has a much smaller effect on DNN predictions than would be predicted based
on the effect of disrupting just one of the three sites. We thus see that modeling GE nonlinearities is essential when interpreting
genomic DNNs in terms of epistatic interactions between genetic elements.

SQUID supports global DNN interpretations
In the above analyses, SQUID used in silico MAVE libraries generated by partially mutagenizing a specific sequence of interest
in the genome. As a result, the surrogate models inferred by SQUID provided DNN interpretations that are limited to localized
regions of sequence space. In previous work, however, we proposed a DNN interpretation method called global importance
analysis (GIA),49 in which the DNN is evaluated on completely random sequences containing embedded genetic elements,
such as putative TF binding sites. We therefore investigated whether SQUID could provide useful global DNN interpretations
using a modified version of the sequence libraries used in GIA.

First we asked whether SQUID could provide global interpretations for individual TFs. For each TF of interest, we generated
an in silico MAVE library by embedding partially mutagenized versions of the consensus TF binding site within random DNA
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Figure 6. SQUID captures epistatic interactions. a, Pipeline for analyzing context-averaged epistatic interactions. The
pipeline consists of 3 steps: (1) pairs of consensus binding sites (A and B) are identified in genomic sequences; (2)
pairwise-interaction models are inferred for each identified sequence; and (3) the values of surrogate model parameters
describing intra-site interactions (A, B) and inter-site interactions (AB) are averaged across sequence contexts. b, Performance
of surrogate models for 50 genomic sequences having two consensus AP-1 binding sites each. Results are shown for both
additive and pairwise-interaction models, each with (GE) and without (linear) a GE nonlinearity. Correlation values were
computed between surrogate model predictions and DNN predictions on in silico test data. Overlaid lines represent the median,
upper, and lower quartiles. P-values were computed using the one-sided Mann-Whitney U test. ***, p < 0.001. c, Surrogate
model parameters quantifying intra-site and inter-site interactions, averaged across the 50 genomic sequence contexts.
Pairwise-interaction models having GE nonlinearities were used in this analysis. d,e, Parameters of pairwise-interaction
models, either with (panel d) or without (panel e) a GE nonlinearity, determined for a genomic locus having three putative AP-1
binding sites. GE, global epistasis; DNN, deep neural network.
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Figure 7. SQUID supports global DNN interpretations a, In silico MAVE libraries used by SQUID to infer surrotate
models of global TF specificity. Each sequence in the library contains a partially-mutagenized version of a consensus TF
binding site embedded within random DNA. b, Additive surrogate models for BPNet5 inferred by SQUID using libraries of the
form in panel a for the mouse TFs Oct4, Sox2, Klf4, and Nanog. Gray bars indicate 10.5-nt periodicity on either side of the
inferred Nanog motif. c Format of the in silico MAVE libraries used to study global TF-TF epistatic interactions. Each
sequence in the library contains two partially mutagenized consensus TF binding sites embedded a fixed distance apart (0 nt to
32 nt) within random DNA. d, Pairwise surrogate model inferred for BPNet by SQUID using a library of the form in panel c
and putative binding sites for Nanog and Sox2. e, Distance-dependence of inter-site interactions between Nanog and Sox2.
Dots show the Frobenius norm of inter-site pairwise interactions, inferred as in panel d, using libraries having different
distances between the embedded Nanog and Sox2 sites. The occurrence of periodic inter-site interaction minima occurred at
distances where the central AA in Sox2 overlapped with the periodic Nanog-associated flanking signals. Black line is from the
least-squares fitting of a polynomial of degree 10. Libraries used for panels d and e comprised 500,000 sequences each. BPNet
profiles were projected to scalars using PCA, which yielded substantially lower background noise than obtained using profile
contribution scores. DNN, deep neural network; MAVE, multiplex assay of variant effect; TF, transcription factor.

(Fig. 7a). We then used this in silico MAVE library to infer an additive surrogate model. This approach was applied to the
four mouse TFs (Oct4, Sox2, Klf4, and Nanog) modeled by BPNet.5 Figure 7b shows that the resulting additive surrogate
models revealed prominent motifs having low background, which matched the known sequence preferences of the four TFs.
In the case of Nanog, this analysis also revealed periodic secondary motif features in flanking DNA nearly identical to those
in Figure 3c. We conclude that global surrogate modeling with SQUID can provide accurate characterizations of TF binding
motifs independent of specific genomic sequence contexts.
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We next investigated whether SQUID could provide global insights into the epistatic interactions between pairs of TF
binding sites. We created an in silico MAVE library in which partially-mutagenized version of the Nanog and Sox2 consensus
binding sites were inserted into random DNA sequences a fixed distance apart (Fig. 7c). We then used SQUID to infer a
pairwise-interaction model based on this in silico MAVE library. Fig. 7d shows that, similar to the findings in Fig. 6, critical
mutations within Nanog and Sox2 binding sites exhibited positive intra-site epistatic interactions and negative inter-site epistatic
interactions. We then repeated this analysis for Nanog and Sox2 binding sites separated 0 to 32 nt and observed that the strength
of inter-site epistatic interactions varied in a sinusoidal manner consistent with the periodicity of the DNA double helix (Fig.
7e). We conclude that global surrogate modeling with SQUID can provide useful characterizations of epistatic interactions
between TFs in a manner that is independent of genomic sequence context.

Discussion
Here we introduced SQUID, a framework for interpreting genomic DNNs. SQUID uses surrogate models to approximate DNN
functions in user-defined regions of sequence space. The parameters of these surrogate models can then be mechanistically
interpreted: additive surrogate models can be interpreted as attribution maps, and pairwise-interaction surrogate models can
be interpreted as quantifying epistatic interactions. Applying SQUID to a variety of genomic DNNs, we observed that the
attribution maps obtained by SQUID more robustly identify TF binding motifs and provide better variant-effect predictions
than the attribution maps obtained using other DNN interpretability methods. We also observed that SQUID is able to quantify
epistatic interactions that are otherwise obscured by global nonlinearities in the DNN.

SQUID works by using the DNN of interest as a forward simulator of MAVE experiments. SQUID then uses the MAVE-NN
modeling framework26 to infer surrogate models from the resulting in silico data. This surrogate modeling approach has
multiple important advantages over standard DNN interpretability methods.

First, SQUID is model agnostic: it does not require access to the parameters or gradients of the DNN. Rather, SQUID
simply uses the DNN of interest as a black-box oracle. This allows SQUID to be applied to arbitrary genomic DNNs, regardless
of their computational implementation.

Second, SQUID smooths over fluctuations in DNN predictions that are likely to be random rather than functional. This
is because the parameters of the surrogate models that SQUID infers are fit to DNN predictions over an extended region of
sequence space. Our results showed that this increased smoothness can cause the surrogate models to have improved accuracy
relative to the parent DNN.

Third, SQUID leverages domain-specific knowledge to improve the utility of surrogate models. While the use of surrogate
models for interpreting DNNs has been established previously in other fields, these applications typically use linear models.32

By using the latent phenotype models supported by MAVE-NN, the surrogate models inferred by SQUID explicitly account for
global nonlinearities and heteroscedastic noise, both of which are ubiquitous in functional genomic data and in genomic DNNs.
By explicitly accounting for these influences, SQUID is able to remove their confounding effects on the inferred surrogate
model parameters.

Finally, SQUID supports a variety of surrogate models. In this work we demonstrated the use of additive and pairwise-
interaction models, but SQUID also supports use of surrogate models having user-specified mathematical form. SQUID thus has
the ability to infer surrogate models that reflect higher-order epistatic interactions,21, 22, 25, 50 or specific biophysical hypotheses
(e.g. thermodynamic models51–55 or kinetic models56–59).

The biggest drawback of SQUID relative to other DNN interpretability methods is its higher computational demands. This
is due to the need for many forward passes through the DNN during simulation of the in silico MAVE dataset, as well as the
need to fit the surrogate model parameters to these simulated data. We therefore suggest that SQUID is likely to be more
useful for in-depth analyses of specific sequences of interest (e.g., disease-associated loci) rather than large-scale genome-wide
analyses. In this context, however, the advantages of SQUID described above–especially SQUID’s ability to support surrogate
models of arbitrary mathematical form–enables new ways of biologically interpreting genomic DNNs.
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Methods
The SQUID framework
An overview of SQUID’s workflow is given in Supplementary Figure 7. Briefly, SQUID takes as input a sequence of interest
and a specified surrogate model. An in silico MAVE dataset is generated with the InSilicoMAVE object, with specifications
of the mutagenesis strategy given by a Mutagenizer object, and processed model predictions given by a Predictor object.
The in silico MAVE dataset is then fit with surrogate models which are defined as objects in squid/surrogate_zoo.py.

• Mutagenizer. An in silico MAVE dataset is generated by sampling a library of sequences using random partial
mutagenesis of a sequence of interest. We modulate the size of the sequence-space region from which this library is
drawn using two hyperparameters: the sequence that defines the region of interest, which has length L, and the mutation
rate r. The resulting number of mutations in each individual sequence is a Poisson distributed random variable having
mean Lr. squid/mutagenizer.py contains objects that apply the chosen mutagenesis strategy, with the object
RandomMutagenesis executing the random partial mutagenesis in this study.

• Predictor. SQUID currently requires that DNNs provide scalar-valued outputs. However, some genomic DNNs output
high-dimensional predicted profiles, not scalar predictions. For example, ResidualBind-32 predicts 15 chromatin
accessibility profiles of length 64, each profile corresponding to a different cell type and each profile element representing
a binned position with a resolution of 32 nt. squid/predictor.py contains objects, including ScalarPredictor
and ProfilePredictor, that reduce model predictions to scalar values. For profile-based predictions, SQUID also
offers an approach to reduce profiles using principal component analysis (PCA). Specifically, profiles are projected
onto their first principal component, with sign chosen so that the wild-type sequence has higher-than average score (see
Supplementary Fig. 8).

• InSilicoMAVE. The object InSilicoMAVE, defined in squid/mave.py, is a data structure that takes the mutage-
nizer and predictor objects and generates the in silico MAVE dataset for a sequence of interest.

• Surrogate Zoo. The squid/surrogate_zoo.py module currently offers a linear model (SurrogateLinear) as
well as models based on MAVE-NN (SurrogateMAVENN). In SurrogateRidgeCV, the model is computed using
the ridge regression from sklearn (linear_model, RidgeCV). SurrogateMAVENN supports models based on
the built-in modeling capabilities of MAVE-NN. The mathematical forms of these models are described in detail in ref.26

Surrogate models
The surrogate models supported by MAVE-NN for use in SQUID comprise three parts (Fig. 1b): a G-P map, a GE nonlinearity,
and a noise model. Here we summarize the mathematical forms of these model components. In what follows, x represents
a sequence of interest, xl:c is a one-hot encoding of x (i.e., is equal to 1 if x has character c at position l and is equal to 0
otherwise), and y is the DNN-predicted scalar activity of x.

• The G-P map, f (x,θ), which has parameters θ , maps a sequence x to a latent phenotype φ . There are two types of G-P
maps: additive G-P maps and pairwise-interaction G-P maps. Additive G-P maps have a constant parameter θ0, additive
parameters θ l:c, and the mathematical form

f additive(x, θ) = θ0 +
L

∑
l=1

∑
c

θ l:c x l:c .

Pairwise-interaction G-P maps have a constant parameter, additive parameters, pairwise-interaction parameters θl:c,l′:c′ ,
and the mathematical form

fpairwise(x, θ) = θ0 +
L

∑
l=1

∑
c

θ l:c x l:c +
L−1

∑
l=1

L

∑
l′

∑
c,c′

θ l:c, l′:c′ x l:c x l′:c′ .

• The GE nonlinearity, g(φ), maps the latent phenotype φ to a most-probable scalar DNN prediction ŷ. By default, g(φ) is
defined to be an over-parameterized linear combination of hyperbolic tangents. For models “without” a GE nonlinearity,
g(φ) is defined to be a linear function of φ .

• The noise model, p(y|ŷ), describes the expected distribution of DNN predictions y about the most-probable prediction ŷ.
The noise model can be defined using a Gaussian distribution, a Student’s t-distribution, or the skewed t-distributed of
Jones and Faddy.29 The shape parameters of this distribution can either be independent of ŷ (for homoscedastic noise) or
a polynomial function of ŷ (for heteroscedastic noise).
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Deep learning models
This study used six DNNs: ResidualBind-32,31 Basenji-32,31 DeepSTARR,33 Enformer,2 BPNet,5 and a baseline CNN that
predicts ChIP-seq data for the human TF GABPA. Here we briefly describe each DNN and how that DNN was used in our
study to compute a prediction y for each sequence x when generating in silico MAVE data.

• ResidualBind-32 predicts ATAC-seq profiles across 15 human cell lines.31 ResidualBind-32 takes as input a DNA
sequence of length 2048 nt and outputs 15 profiles (one for each cell line) where each profile comprises 64 bins, with each
bin spanning 32 nt. The published ResidualBind-32 parameters were used to compute these profiles. In our attribution
error analyses, y was set equal to the sum of predicted binned ATAC-seq signals over all 64 bins for the single output
channel corresponding to the cell type most associated with the TF of interest (see Supplementary Table 1). In our
variant-effect analysis, y was set equal to the sum of predicted binned ATAC-seq signals over all 64 bins, using a profile
averaged across all 15 output channels.

• Basenji-32 predicts ATAC-seq profiles across 15 human cell lines.46 The input and output of Basenji-32 is identical to
that of ResidualBind-32, and the published Basenji-32 parameters were used to computed predicted ATAC-seq profiles.
Analyses performed using Basenji-32 were performed the same way as for ResidualBind-32.

• DeepSTARR predicts Drosophila enhancer activity as assayed by UMI-STARR-seq.33 DeepSTARR takes as input a
DNA sequence of length 249 nt and outputs two scalar-valued predictions for enhancer activity for developmental (Dev)
and housekeeping (Hk) regulatory programs. The published DeepSTARR parameters were used to predict enhancer
activity. In each analysis, y was computed using the regulatory program most associated with the TF of interest (see
Supplementary Table 1).

• Enformer predicts many different types of functional genomic tracks (e.g., ChIP-seq, DNase-seq, ATAC-seq, and CAGE)
across the human and mouse genomes.2 Enformer takes as input a DNA sequence of length 393,216 nt and (for humans)
outputs 5,313 profiles (one for each track) where each profile comprises 128 bins, each bin spanning 32 nt, representing
the central 114,688 nt of the input sequence. The published Enformer parameters were used to compute these profiles. In
our variant-effect analysis, we used human predictions, where y was computed as in the original study by cropping all
674 “cell-type agnostic” DNase profiles to a 10-bin (1280 nt) region centered about the variant of interest, then summing
across bins in the mean cropped profile.

• BPNet predicts nucleotide-resolution ChIP-nexus binding profiles for four TFs (Oct4, Sox2, Klf4, and Nanog) in mouse
embryonic stem cells.5 BPNet takes as input a DNA sequence of length 1000 nt and outputs a 1000-valued positive (+)
and negative (-) strand profile for each of the four TFs (8 profiles in total per input). The parameters of BPNet were
retrained as specified in the original release,60 and the resulting model was confirmed to recapitulate the published model
BPNet-OSKN61 by a visual inspection of attribution maps. Analyses for different prediction tasks used different profiles
(see Supplemental Table 2). In all BPNet analyses except those in Figure 7, y was computed using the profile contribution
score defined in the original paper.5 In the BPNet analysis for Figure 7, y was instead computed using PCA as described
above and in Supplementary Figure 8.

• The baseline CNN predicts ChIP-seq peaks for the human TF GABPA in GM12878 cells. This model takes as input a
DNA sequence of length 200 nt and outputs a single probability. In our analysis of the effects of benign overfitting, y was
computed as the logit of the output probability.

The baseline CNN has not been previously published. Briefly, this model was trained to distinguish binary-labeled
sequences: ChIP-Seq peaks of GABPA in human GM12878 cells (positive labels) and DNase-seq peaks of GM12878 cells
that did not overlap with any GABPA peaks (negative labels). Data was acquired from https://zenodo.org/record/7011631
(data/GABPA_200.h5); 11,022, 1,574, and 3,150 sequences in the training, validation, and test sets were respectively
used. The CNN takes as input a DNA sequence of length 200 nt and outputs a probability. The hidden layers consist
of three convolutional blocks each with max pooling (size 4 with stride 4), followed by a fully-connected hidden layer
with 128 units and an output layer to a single node with sigmoid activations. The number of filters and the kernel sizes
from the first convolutional layer to the third are: (32, 15), (64, 5), and (96, 5). The same padding was used for each
convolutional layer. All hidden layers used ReLU activations and dropout,62 with rates given in order by 0.1, 0.2, 0.3,
and 0.5. The CNN was trained to minimize the binary cross-entropy loss function using Adam63 with default parameters
and a batch size of 64. Early stopping was implemented to save model parameters at the epoch that corresponded to the
largest area-under the ROC curve (AUROC) on the validation set, yielding the pre-overfitting DNN parameters. From
that point, the CNN was trained for an additional 200 epochs, yielding the post-overfitting DNN parameters.
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Attribution methods
Our analyses used attribution maps computed using a variety of methods, implemented as follows.

• In silico mutagenesis (ISM) scores were computed by evaluating the scalar DNN prediction for every single-nucleotide
variant of the sequence of interest.

• Saliency Maps scores were computed by evaluating the gradient of the scalar DNN prediction at the sequence of interest
with respect to the one-hot encoding of that sequence.

• DeepSHAP scores were computed as previously described for DeepSTARR.33

• DeepLIFT scores were computed as previously described for BPNet.5

• SmoothGrad scores were computed by averaging Saliency Maps over 50 noisy encodings of the sequence of interest.
Each noisy encoding was computed by adding Gaussian noise (mean zero, standard deviation 0.25) to each of the 4L
matrix elements of the one-hot encoding for the sequence of interest.

Standardization of attribution maps
Prior to comparing attribution maps, we standardized these maps to remove non-identifiable and/or non-meaningful degrees of
freedom. Using vl:c to denote the attribution map value for character c at position l, this standardization was carried out as
follows.

• For plotting sequence logos and computing attribution errors: Attribution map values were standardized using the
transformation vl:c → (vl:c − vl)/σ , where vl =

1
4 ∑c′ vl:c and σ2 = 1

4L ∑c,l(vl:c − vl)
2. This transformation is essentially

a gradient correction at each position,64 followed by a normalization with the square root of the total variation of the
attribution scores across the sequence.

• For variant-effect analysis (Table 1): Attribution map values were standardized using the transformation vl:c →
vl:c − vl:swt

l
, where swt is the wild-type sequence and swt

l is the character at position l in this sequence.

• For plotting heatmaps of additive and pairwise-interaction model parameters (Fig. 6c,d,e and Fig. 7d): Parameters were
standardized as in ref.26 using the “empirical gauge”.

Attribution error computations
Attribution errors were computed as follows.

• For consensus TF binding sites (Fig. 2 and Fig. 3), we first located all instances of the consensus TF binding site in the
genome; the consensus sites used for each TF are listed in Supplemental Table 1. Using a baseline attribution method
(Saliency Maps for ResidualBind-32, ISM for DeepSTARR and BPNet), we then ranked and manually pruned these
genomic sequences to identify m = 50 putative functional and spatially-isolated TF binding sites. For each of the m
genomic sequences, we then computed an attribution map spanning the putative TF binding site plus 100 nucleotides on
either side (i.e., flanks). We then cropped these m attribution maps to span n f nucleotides on either side of the consensus
TF binding site. For Figure 2 we used n f = 15; for Figure 3 we used n f = 0,5,10,20,30, . . . ,100. For each of the m
cropped attribution maps, the attribution error was defined to be the Euclidean distance between the cropped attribution
map and the average of the m cropped attribution maps.

• For weak TF binding sites (Fig. 5), we first located all instances of variants of the consensus TF binding site in
the genome having up to 2 naturally-occurring mutations. For each group of putative binding sites having 0, 1, or 2
mutations, we then ranked and manually pruned these genomic sequences to identify m = 50 putative functional and
spatially-isolated TF binding sites as above. For each of the 3m genomic sequences, we then computed an attribution
map spanning the putative TF binding site plus 100 nucleotides on either side. We then cropped these 3m attribution
maps to span n f = 50 nucleotides on either side of the consensus TF binding site. For each of the 3m cropped attribution
maps, the attribution error was defined to be the Euclidean distance between the cropped attribution map and the average
of the m cropped attribution maps from the ensemble of binding sites having 0 mutations.
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Context-averaged epistatic interactions
To compute the context-averaged epistatic interactions shown in Figure 6c, first, we located all pairs of consensus AP-1 binding
sites in the genome separated by no more than 20 nucleotides. We then ranked and pruned these pairs to identify m = 50
genomic sequences for further analysis. For each of the m genomic sequences, we used SQUID to infer a pairwise-interaction
model spanning the pair of putative sites and 6 nucleotides on either side. Parameter values were standardized by expressing
them in the empirical gauge.26 Additive parameters for each site were then cropped and averaged over the m sequences. The
intra-site and inter-site pairwise-interaction parameters were similarly cropped and averaged. This process is schematized in
Figure 6a.

Variant-effect analysis
The ability of different attribution methods to predict variant effects, quantified in Table 1, was benchmarked as follows.

• The variant-effect data used to perform these benchmark studies is MPRA data from ref.44. These data comprise
measurements for the effects of nearly all SNVs in 15 disease-associated regulatory sequences, with each sequence
ranging from 187 nt to 600 nt in length. For each assayed SNV, variant effect was quantified as the difference in measured
activity between the variant and wild-type sequences.

• To compute attribution map predictions of variant effects, we extracted the genomic sequences centered about each of
the 15 assayed regulatory sequences (2,048 nt per sequence for tests of ResidualBind-32 and Basenji-32; 393,216 nt per
sequence for tests of Enformer). For each attribution method, the effect of an SNV, from character swt

l to character c at
position l in each regulatory sequence swt, was quantified as vl:c − vl:swt

l
. When inferring surrogate models using SQUID,

we mutagenized the regulatory sequence and 400 nt of flanking sequence on either side.

Data availability

The data used in this paper is available on Zenodo.65

Code availability

SQUID is an open-source Python package based on TensorFlow.66 SQUID can be installed via pip (https://pypi.org/project/
squid-nn) or GitHub (https://github.com/evanseitz/squid-nn). Documentation for SQUID is provided on ReadTheDocs
(https://squid-nn.readthedocs.io). The code for performing all analyses in this paper is available on GitHub as well (https:
//github.com/evanseitz/squid-manuscript), and a static snapshot of this code is available on Zenodo.65
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