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TF name consensus seq. DNN name | DNN task PWM ID (database)
AP-1 TGAGTCA ResBind-32 | PC-3 MAO0476.1 (Jaspar)
AP-1/AP-1 TGANTCA ---TGANTCA ResBind-32 PC-3 n/a
IRF1 TGAAAC ResBind-32 | GM12878 n/a
IRF1-long AANTGAAAC ResBind-32 | GM12878 MAO0050.1 (Jaspar)
SPI1 GGAAGT ResBind-32 | GM12878 n/a
FEV CCGGAA ResBind-32 HCT116 n/a
AP-1 TGACTCA DeepSTARR | Dev MAO0476.1 (Jaspar)
Dref TATCGATA DeepSTARR | Hk MO00230 (Homer)
Ohlerl AGTGTGACC DeepSTARR | Hk MO00232 (Homer)
Ohler5 CAGCTG DeepSTARR | Hk n/a
Oct4 TTTGCAT BPNet Oct4 n/a
Sox?2 GAACAATAG BPNet Sox2 H12CORE.0.P.B (Hocomoco)
Klif4 GGGTGTGGC BPNet Kif4 n/a
Nanog AGCCATCAA BPNet Nanog H12CORE.1.P.B (Hocomoco)
Nanog /Sox2 | AGCCATCAA ---GAACAATAG | BPNet Nanog n/a

Supplementary Table 1. TFs analyzed in our study. Shown for each TF is the consensus sequence used, the DNN that
models the TF, the DNN prediction task to which attribution methods were applied, and PWMs used to investigate weak
binding sites. TF, transcription factor; DNN, deep neural network; PWM, position weight matrix.
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Supplementary Figure 1. Influence of mutation rate and library size on SQUID attribution maps. a and b, attribution
errors (left) and average attribution maps (right) found for 50 SQUID attribution maps computed for the TF AP-1 as in Fig. 2,
but using in silico MAVE libraries having (a) variable mutation rate r and fixed size N = 100,000, or (b) fixed mutation rate
r = 10% and variable size N. All SQUID attribution maps were computed using additive models with GE nonlinearities,
followed by cropping these maps using a flank size of ny = 50 nt. TF, transcription factor; MAVE, multiplex assay of variant
effect; GE, global epistasis.
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Supplementary Figure 2. Nonlinearities and noise across DNNs and TFs. Examples of the GE nonlinearities and
heteroscedastic noise models inferred in the SQUID (GE) analyses performed for Fig. 3. Each plot shows results for a

representative sequence from the 50 sequences analyzed for each combination of DNN and TF. DNN, deep neural network; TF,

transcription factor; GE, global epistasis; PI, prediction interval.
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Supplementary Figure 3. Average and example binding motifs for Oct4 and Sox2. a, Oct4 motifs, centered on the putative

Position (nt)

binding site TTTGCAT. b, Sox2 motifs, centered on the putative binding site GAACAATAG. TF binding motifs are from
attribution maps computed for BPNet and plotted as in Fig. 3c. TF, transcription factor.
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Supplementary Figure 4. Attribution maps computed for strong and weak TF binding sites. Top row shows the average

mut.

Avg 0 }Mwwﬁmr; e M}__.w
] et

——— ResidualBind (IRF1)

Saliency

. DeepSTARR (Ohler1)

Additive

DeepExplainer

Additive

0r,
e

i

——T

i

W;MAMAM@C%_ g IEE ) stpc Mé&& o L & ,cAI‘p.EC.. MMC
Uéml‘é it Tt g iy CelAlnt i
e T
ighc “DI I el [ e}LIZliégéivE i ,ACE}% J%f{?‘;%k" “@ITST:% -
- VSR R 7% Q‘TWI V™ o s T —
? 3”3 i - s ?IA @@A?W;‘*%Ww .',I%L? - G R rLI,I;%QGfL ¢ 5,3@&%

of 50 attribution maps in the O-mutation ensemble computed for (a) IRF1 using ResidualBind-32, and for (b) Ohler using

DeepSTARR. Remaining rows show attribution maps for four representative genomic loci with the central putative binding site

having varying numbers of mutations from the consensus binding site. TF, transcription factor.
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Supplementary Figure 5. Performance of attribution methods at predicting variant effects at individual loci. Pearson
correlation scores for each of the 15 disease-associated loci assayed in CAGIS, computed for the attribution methods and DNNs
listed in Table 1. DNN, deep neural network.



Supplementary Material | E. Seitz, D. McCandlish, J. Kinney and P. Koo

-- CTRL
120 A (o)
~—~ 100 4 (0]
= —° o
c
.2
° 80 A
g 8
o
o
= 60 - 6
= o
40 A
___________________________________________ :lj____________________________________________________ﬁ__““-_
0 1 2 3

Number of occluded AP-1 sites

Supplementary Figure 6. Occlusion analysis of AP-1 binding site effects. Occlusion study based on the wild-type sequence
investigated in Fig. 6d and 6e. Occlusions were performed 100 times for every combination of one, two, or three occluded
motifs, with the DNN prediction taken independently for each instance. In each occluded sequence, the corresponding AP-1
core (7-mer) sites were scrambled using a uniform probability of nucleotides at each position. The baseline score (CTRL) was
calculated from the median of predictions corresponding to 100 instances of a dinucleotide shuffle over the full (2048-nt)
sequence. The DNN prediction rapidly approaches the genomic baseline as additional binding sites are occluded.
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INPUTS
- Sequence DL model
v (%) (model)
1. SIMULATE DATA
mutagenizer.py mave.py predictor.py
RandomMutagenesis () — | InSilicoMAVE(Q) 4— ScalarPredictor()
CustomMutagenesis(). .. ProfilePredictor()...
x_mut y_mut
MAVE dataset
(x_mut, y_mut) : =
" ]
2. TRAIN SURROGATE l
surrogate_zoo.py
Surrogatelinear ()
SurrogateMAVENN ()
SurrogateCustom() . ..
Trained model \
_)-
(surrogate_model) /
3. VISUALIZE PARAMETERS l
impress.py
plot_y_vs_phi(Q)
plot_additive_logo()
plot_pairwise_logo()...

Supplementary Figure 7. SQUID workflow. Flowchart representing a typical DNN interpretation analysis pipeline using
SQUID. DNN, deep neural network.
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Supplementary Figure 8. Dimensionality reduction of DNN predictions using PCA. a, Example ATAC-seq profile
predicted by ResidualBind-32 for a representative sequence of interest containing a putative AP-1 binding site. The profile
shown was cropped to a region spanning the putative site and 30 nt of flanking DNA on either side. b, Profiles computed for
sequences in the in silico MAVE dataset generated by SQUID when analyzing the sequence of interest from panel a. ¢, Ranked
eigenvalues from a PCA analysis of the profiles in panel b. d, Projection of profiles onto the first two principal components. e,
Scalar predictions y for three projection methods: PCA, sum, and max. PCA projections were computed by projecting profiles
onto the first principal component. Sum projections were computed by summing the entries in each profile. Max projections
were computed by taking the maximum entry in each profile. To aid comparisons between different projection methods, the y
values for each method were centered about zero and rescaled to have unit standard deviation. The flat region observed near
ranked prediction index 80,000 results from sequences in the in silico MAVE library that have no mutations. PCA, principal
component analysis.
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